• Title/Summary/Keyword: Hypocretin neuropeptide precursor

Search Result 1, Processing Time 0.013 seconds

Effect of Starving and Re-feeding on Appetite-related Genes in Olive Flounder Paralichthys olivaceus

  • Kim, Min Ju;Song, Jin Ah;Choi, Cheol Young
    • Journal of Marine Life Science
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • This investigation aimed to assess the appetite response changes of olive flounder to starving and re-feeding conditions. Three different feeding groups (2 weeks feeding, fed; 2 weeks starving, starved; and 1 week starving and 1 week feeding, re-fed) were established to examine the changes in appetite-related genes for each group. The weight gain of the fish was highest for the fed group and lowest for the starving group. Based on the daily feed intake (DFI) and cumulative feed intake (CFI), overall food intake was found to increase in the re-fed group more than in the fed group from week 1 to week 2 of the experiment. Hypocretin neuropeptide precursor (HCRT) and galanin receptor 1 (GAL-R1) mRNA expression in the brain of olive flounder were decreased in the starved group. Corticotropin-releasing hormone (CRH) was decreased in all experimental groups, except for the fed group. However, overall leptin concentrations in the plasma did not change across groups. Considering the differences between this study and previous studies on starving and feeding, various factors (except the production and expression mechanisms of appetite-related factors in response to starving) are likely acting on the appetite responses of the fish. In this study, a 1-week re-feeding period induced substantial effects on appetite response when compared to a 2-week feeding period. These findings show that even if re-feeding is performed after starving, the unbalance caused by the re-feeding can affect various physiological changes in fish by feed intake efficiency.