Browse > Article
http://dx.doi.org/10.23005/ksmls.2022.7.1.1

Effect of Starving and Re-feeding on Appetite-related Genes in Olive Flounder Paralichthys olivaceus  

Kim, Min Ju (Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University)
Song, Jin Ah (Marine Bio-Resources research Unit, Korea Institute of Ocean Science and Technology)
Choi, Cheol Young (Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University)
Publication Information
Journal of Marine Life Science / v.7, no.1, 2022 , pp. 1-9 More about this Journal
Abstract
This investigation aimed to assess the appetite response changes of olive flounder to starving and re-feeding conditions. Three different feeding groups (2 weeks feeding, fed; 2 weeks starving, starved; and 1 week starving and 1 week feeding, re-fed) were established to examine the changes in appetite-related genes for each group. The weight gain of the fish was highest for the fed group and lowest for the starving group. Based on the daily feed intake (DFI) and cumulative feed intake (CFI), overall food intake was found to increase in the re-fed group more than in the fed group from week 1 to week 2 of the experiment. Hypocretin neuropeptide precursor (HCRT) and galanin receptor 1 (GAL-R1) mRNA expression in the brain of olive flounder were decreased in the starved group. Corticotropin-releasing hormone (CRH) was decreased in all experimental groups, except for the fed group. However, overall leptin concentrations in the plasma did not change across groups. Considering the differences between this study and previous studies on starving and feeding, various factors (except the production and expression mechanisms of appetite-related factors in response to starving) are likely acting on the appetite responses of the fish. In this study, a 1-week re-feeding period induced substantial effects on appetite response when compared to a 2-week feeding period. These findings show that even if re-feeding is performed after starving, the unbalance caused by the re-feeding can affect various physiological changes in fish by feed intake efficiency.
Keywords
Appetite; Corticotropin-releasing hormone; Hypocretin neuropeptide precursor; Olive flounder; Re-feeding;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Choi CY, Song JA, Lee TH, Park YS. 2021. Effect of green wavelength light on stress and appetite responses of olive flounder (Paralichthys olivaceus) following feed deprivation and re-feeding. Aquac Rep 19: 100605. http://doi.org/10.1016/j.aqrep.2021.100605.   DOI
2 Li L, Wei S, Huang Q, Feng D, Zhang S, Liu Z. 2013. A novel galanin receptor 1a gene in zebrafish: tissue distribution, developmental expression roles in nutrition regulation. Comp Biochem Physiol B Biochem Mol Biol 164: 159-167. http://doi.org/10.1016/j.cbpb.2012.12.004.   DOI
3 McCue MD. 2010. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol 156: 1-18. http://doi.org/10.1016/j.cbpa.2010.01.002.   DOI
4 Navarro I, Gutierrez J. 1995. Fasting and starvation. Fish Physiol Biochem 4: 393-434. http://doi.org/10.1016/S1873-0140(06)80020-2.   DOI
5 O'Donnell D, Ahmad S, Wahlestedt C, Walker P. 1999. Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: distinct distribution from GALR1. J Comp Neurol 409: 469-481. http://doi.org/10.1002/(SICI)1096-9861(19990705)409:3<469::AID-CNE10>3.0.CO;2-Q.   DOI
6 Stanley S, Wynne K, McGowan B, Bloom S. 2015. Hormonal regulation of food intake. Physiol Rev 85: 1131-1158. http://doi.org/10.1152/physrev.00015.2004.   DOI
7 Volkoff H, Bjorklund JM, Peter RE. 1999. Stimulation of feeding behavior and food consumption in the goldfish, Carassius auratus, by orexin-A and orexin-B. Brain Res 846: 204-209. http://doi.org/10.1016/S0006-8993(99)02052-1.   DOI
8 Volkoff H, Canosa LF, Unniappan S, Cerda-Reverter JM, Bernier NJ, Kelly SP, Peter RE. 2005. Neuropeptides and the control of food intake in fish. Gen Comp Endocrinol 142: 3-19. http://doi.org/10.1016/j.ygcen.2004.11.001.   DOI
9 Volkoff H, Xu M, MacDonald E, Hoskins L. 2009. Aspects of the hormonal regulation of appetite in fish with emphasis on goldfish, Atlantic cod and winter flounder: notes on actions and responses to nutritional, environmental and reproductive changes. Comp Biochem Physiol A Mol Integr Physiol 153: 8-12. http://doi.org/10.1016/j.cbpa.2008.12.001.   DOI
10 Wang T, Zhou C, Yuan D, Lin F, Chen H, Wu H, Wei R, Xin Z, Liu J, Gao Y, Li Z. 2014. Schizothorax prenanti corticotropin-releasing hormone (CRH): molecular cloning, tissue expression, and the function of feeding regulation. Fish Physiol Biochem 40: 1407-1415. http://doi.org/10.1007/s10695-014-9935-6.   DOI
11 Wu L, Xie S, Zhu X, Cui Y, Wootton RJ. 2002. Feeding dynamics in fish experiencing cycles of feed deprivation: a comparison of four species. Aquac Res 33: 481-489. http://doi.org/10.1046/j.1365-2109.2002.00733.x.   DOI
12 Wynne K, Stanley S, McGowan B, Bloom S. 2005. Appetite control. J Endocrinol 184: 291-318. http://doi.org/10.1677/joe.1.05866.   DOI
13 Bar N. 2014. Physiological and hormonal changes during prolonged starvation in fish. Can J Fish Aquat Sci 71: 1447-1458. http://doi.org/10.1139/cjfas-2013-0175.   DOI
14 Bernier NJ, Peter RE. 2001. Appetite-suppressing effects of urotensin I and corticotropin-releasing hormone in goldfish (Carassius auratus). Neuroendocrinology 73: 248-260. http://doi.org/10.1159/000054642.   DOI
15 Novak CM, Jiang X, Wang C, Teske JA, Kotz CM, Levine JA. 2005. Caloric restriction and physical activity in zebrafish (Danio rerio). Neurosci Lett 383: 99-104. http://doi.org/10.1016/j.neulet.2005.03.048.   DOI
16 Iwasa T, Matsuzaki T, Munkhzaya M, Tungalagsuvd A, Kuwahara A, Yasui T, Irahara M. 2015. Developmental changes in the hypothalamic mRNA levels of prepro-orexin and orexin receptors and their sensitivity to fasting in male and female rats. Int J Dev Neurosci 46: 51-54. http://doi.org/10.1016/j.ijdevneu.2015.07.005.   DOI
17 Cho SH. 2014. Effects of food deprivation and feeding ratio on the growth, feed utilization and body composition of juvenile olive flounder Paralichthys olivaceus. Fish Aquatic Sci 17: 449-454. doi: 10.5657/FAS.2014.0449. http://doi.org/10.5657/FAS.2014.0449.   DOI
18 Choi CY, Choi JY, Choi YJ, Yoo JH. 2018. Physiological effects of various light spectra on oxidative stress by starvation in olive flounder, Paralichthys olivaceus. Mol Cell Toxicol 14: 399-408. http://doi.org/10.1007/s13273-018-0044-y.   DOI
19 Crespi EJ, Vaudry H, Denver RJ. 2004. Roles of corticotropin-releasing factor, neuropeptide Y and corticosterone in the regulation of food intake in Xenopus laevis. J Neuroendocrinol 16: 279-288. http://doi.org/10.1111/j.0953-8194.2004.01168.x.   DOI
20 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408. http://doi.org/10.1006/meth.2001.1262.   DOI
21 Shpilman M, Hollander-Cohen L, Ventura T, Gertler A, LevaviSivan B. 2014. Production, gene structure and characterization of two orthologs of leptin and a leptin receptor in tilapia. Gen Comp Endocrinol 207: 74-85. http://doi.org/10.1016/j.ygcen.2014.05.006.   DOI
22 Volkoff H. 2015. Cloning, tissue distribution and effects of fasting on mRNA expression levels of leptin and ghrelin in redbellied piranha (Pygocentrus nattereri). Gen Comp Endocrinol 217: 20-27. http://doi.org/10.1016/j.ygcen.2015.05.004.   DOI
23 Volkoff H, Unniappan S, Kelly SP. 2009. The endocrine regulation of food intake. Fish Physiol 28: 421-465. http://doi.org/10.1016/S1546-5098(09)28009-5.   DOI
24 Tinoco AB, Nisembaum LG, Isorna E, Delgado MJ, Pedro ND. 2012. Leptins and leptin receptor expression in the goldfish (Carassius auratus). Regulation by food intake and fasting/ overfeeding conditions. Peptides 34: 329-335. http://doi.org/10.1016/j.peptides.2012.02.001.   DOI
25 Williams G, Bing C, Cai XJ, Harrold JA, King PJ, Liu XH. 2001. The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol Behav 74: 683-701. http://doi.org/10.1016/S0031-9384(01)00612-6.   DOI
26 Zorrilla EP, Brennan M, Sabino V, Lu X, Bartfai T. 2007. Galanin type 1 receptor knockout mice show altered responses to high-fat diet and glucose challenge. Physiol Behav 91: 479-485. http://doi.org/10.1016/j.physbeh.2006.11.011.   DOI
27 Cho SH, Lee SM, Park BH, Ji SC, Lee J, Bae J, Oh SY. 2006. Compensatory growth of juvenile olive flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season. J World Aquac Soc 37: 168-174. http://doi.org/10.1111/j.1749-7345.2006.00023.x.   DOI
28 Erhuma A, Bellinger L, Langley-Evans SC, Bennett AJ. 2007. Prenatal exposure to undernutrition and programming of responses to high-fat feeding in the rat. Br J Nutr 98: 517-524. http://doi.org/10.1017/S0007114507721505.   DOI
29 Holzer-Petsche U, Moser RL. 1993. Pharmacological evidence for the release of galanin from rat stomach. Neuropeptides 25: 47-50. http://doi.org/10.1016/0143-4179(93)90067-K.   DOI
30 Laque A, Zhang Y, Gettys S, Nguyen TA, Bui K, Morrison CD, Munzberg H. 2013. Leptin receptor neurons in the mouse hypothalamus are colocalized with the neuropeptide galanin and mediate anorexigenic leptin action. Am J Physiol Endocrinol Metab 304: E999-E1011. http://doi.org/10.1152/ajpendo.00643.2012.   DOI
31 Chu DLH, Li VWT, Yu RMK. 2010. Leptin: clue to poor appetite in oxygen-starved fish. Mol Cell Endocrinol 319: 143-146. http://doi.org/10.1016/j.mce.2010.01.018.   DOI
32 Barson JR, Leibowitz SF. 2017. Orexin/hypocretin system: role in food and drug overconsumption. Int Rev Neurobiol 36: 199-237. http://doi.org/10.1016/bs.irn.2017.06.006   DOI
33 Bernier NJ. 2006. The corticotropin-releasing factor system as a mediator of the appetite-suppressing effects of stress in fish. Gen Comp Endocrinol 146: 45-55. http://doi.org/10.1016/j.ygcen.2005.11.016.   DOI
34 Butler JM, Herath EM, Rimal A, Whitlow SM, Maruska KP. 2020. Galanin neuron activation in feeding, parental care, and infanticide in a mouthbrooding African cichlid fish. Horm Behav 126: 104870. http://doi.org/10.1016/j.yhbeh.2020.104870.   DOI
35 Ali M, Nicieza A, Wootton RJ. 2003. Compensatory growth in fishes: a response to growth depression. Fish Fish 4: 147-190. http://doi.org/10.1046/j.1467-2979.2003.00120.x.   DOI
36 Pedro ND, Cespedes MV, Delgado MJ, Alonso-Bedate M. 1995. The galanin-induced feeding stimulation is mediated via α2-adrenergic receptors in goldfish. Regul Pept 57: 77-84. http://doi.org/10.1016/0167-0115(95)91255-4.   DOI
37 Ahima RS, Saper CB, Flier JS, Elmquist JK. 2000. Leptin regulation of neuroendocrine systems. Front Neuroendocrinol 21: 263-307. http://doi.org/10.1006/frne.2000.0197.   DOI