• Title/Summary/Keyword: Hypochlorous acid

Search Result 42, Processing Time 0.029 seconds

Optimization of disposable paper-based test strips for hypochlorous acid detection

  • Rita E. Ampiaw;Muhammad Yaqub;Changyeon Woo;Wontae Lee
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.181-189
    • /
    • 2023
  • The Covid-19 pandemic has increased demand for chlorine-based sanitizing solutions, most of which contain hypochlorous acid (HOCl) as an active agent. Free chlorine (HOCl) in these sanitizers is crucial for their efficacy. Disposable test strips are affordable and convenient tools for determining various qualitative and quantitative parameters. In this study, disposable opto-chemical test strips were developed by physically immobilizing 3,3',5,5'-tetramethylbenzidine (TMB) and o-dianisidine (o-D) reagents on chromatography and filter paper-based test strips for the visualization and detection of free chlorine in the form of HOCl. The reagents undergo a rapid color change upon reaction with chlorine through a redox reaction. The paper-based test strips showed rapid color change within a minute and a low sample volume requirement (1 ml). This portable, disposable paper-based test strip is a simple and cost-effective way to rapidly detect the presence of HOCl sanitizers for home and field applications. Both TMB and o-D successfully detected chlorine. Chromatography paper proved to be the more efficient option among the two papers used as substrates for the reagents (TMB and o-D). It exhibited high retention capacity and high performance in terms of color transformation when reacting with HOCl, even after two months of storage.

Effect of smear layer deproteinization on bonding of self-etch adhesives to dentin: a systematic review and meta-analysis

  • Alshaikh, Khaldoan H.;Hamama, Hamdi H.H.;Mahmoud, Salah H.
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.14.1-14.16
    • /
    • 2018
  • Objectives: The aim of this systematic review was to critically analyze previously published studies of the effects of dentin surface pretreatment with deproteinizing agents on the bonding of self-etch (SE) adhesives to dentin. Additionally, a meta-analysis was conducted to quantify the effects of the above-mentioned surface pretreatment methods on the bonding of SE adhesives to dentin. Materials and Methods: An electronic search was performed using the following databases: Scopus, PubMed and ScienceDirect. The online search was performed using the following keywords: 'dentin' or 'hypochlorous acid' or 'sodium hypochlorite' and 'self-etch adhesive.' The following categories were excluded during the assessment process: non-English articles, randomized clinical trials, case reports, animal studies, and review articles. The reviewed studies were subjected to meta-analysis to quantify the effect of the application time and concentration of sodium hypochlorite (NaOCl) and hypochlorous acid (HOCl) deproteinizing agents on bonding to dentin. Results: Only 9 laboratory studies fit the inclusion criteria of this systematic review. The results of the meta-analysis revealed that the pooled average microtensile bond strength values to dentin pre-treated with deproteinizing agents (15.71 MPa) was significantly lower than those of the non-treated control group (20.94 MPa). Conclusions: In light of the currently available scientific evidence, dentin surface pretreatment with deproteinizing agents does not enhance the bonding of SE adhesives to dentin. The HOCl deproteinizing agent exhibited minimal adverse effects on bonding to dentin in comparison with NaOCl solutions.

Electrochemical nitrate reduction using a cell divided by ion-exchange membrane

  • Lee, Jongkeun;Cha, Ho Young;Min, Kyung Jin;Cho, Jinwoo;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.189-194
    • /
    • 2018
  • Electrochemical reduction of nitrate was studied using Zn, Cu and (Ir+Ru)-Ti cathodes and Pt/Ti anode in a cell divided by an ion exchange membrane. During electrolysis, effects of the different cathode types on operating parameters (i.e., voltage, temperature and pH), nitrate removal efficiency and by-products (i.e., nitrite and ammonia) formation were investigated. Ammonia oxidation rate in the presence of NaCl was also determined using the different ratios of hypochlorous acid to ammonia. The operating parameter values were similar for all types of cathode materials and were maintained relatively constant. Nitrate was well reduced and converted mostly to ammonia using Zn and Cu cathodes. Ammonia, produced as a by-product of nitrate reduction, was oxidized in the presence of NaCl in the electrochemical process and the oxidation performance was enhanced upon increasing the hypochlorous acid-to-ammonia ratio to 1.09:1. Zn and Cu cathodes promoted the nitrate reduction to ammonia and the produced ammonia was finally removed from solution by reacting with hypochlorite ions. Using Zn or Cu cathodes, instead of noble metal cathodes, in the electrochemical process can be an alternative technology for nitrate-containing wastewater treatment.

Characteristics of odorous VOCs removal by using electrolytic oxidant (전해 산화제에 의한 악취 원인 VOCs 제거 특성)

  • Lee, Tae Ho;Ryu, Hee Wook
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.381-388
    • /
    • 2018
  • In this study, various conditions and phenomena that occur in the process of removing odorous VOCs by using electrolyzed oxidant were examined. The formation of hypochlorous acid, which is an oxidant produced by electrolysis, was investigated and the properties of the oxidizing agent used to decompose toluene, xylene, and cyclohexane were investigated. As a result, it was found that the production rate and the final concentration of the oxidizing agent increased with the current density. It was found that the degree of removal varies depending on the property of each pollutant. Interestingly, in the batch experiments in which the pH of the produced oxidant was controlled, it was found that the degree of elimination varied depending on the pH of the substance. These results suggest that the difference in the concentration and distribution of hypochlorous acid (HOCl) and hypochlorite ($OCl^-$) due to the pH change leads to the difference in oxidizing power on the oxidation characteristics of each substance. Styrene and terpineol showed better degradation characteristics than toluene and xylene in odorous VOC removal experiments by spraying electrolytic oxidant using a lab-scale continuous reactor. In conclusion, the removal of odorous VOCs by the electrolytic oxidant can have various applications in that it can oxidize pollutants of various spectra.

첨가제가 이산화염소 표백에 미치는 영향

  • 윤병호;왕립군;김세종;김용식;최경화
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04a
    • /
    • pp.84-88
    • /
    • 1999
  • In chlorine dioxide delignigication or bleaching, chlorate is mainly formed by the reaction between chlorite and hypochlorous acid, thus scavengers of chlorine or hypochlorous acid can be used to reduce the formation of chlorate which is unfavorable to environment. In this study, additives such as sulfamic acid, DMSO, hydrogen peroxide, or sodium chlorite was added to chlorine solution or pure $ClO_2$ solution to check their reactivity with $Cl_2$ and $ClO_2$. These additives were also added directly into general $ClO_2$ solution which contained certain amount of chlorine, then the additive-treated $ClO_2$ solution were used in bleaching stages. The aim of this procedure was to remove the original amount of chlorine that was thought to be possibly the main reason for the formation of chlorate and AOX. The additives were found to be able to eliminate chlorine very fast and selectively, but $H_2$ $O_2$ should be used under pH4, otherwise it also reacts with $ClO_2$. After the additives reacted With $Cl_2$, DMSO turned into an inactive product $(CH_3)_2SO_2$, While Sulfamic acid turned into $HClSO_3H$ that still remained active in oxidation, and $NaClO_2$ produced $ClO_2$. The addition of $HNaClO_2$ showed significant improvement in delignification but the deeper delignification led to higher formation of chlorate. When the additive-treated chlorine dioxide solutions were used in bleaching, both sulfamic acid, DMSO, and hydrogen peroxide showed no significant changes of DE brightness and Kappa number. The formation of chlorate was reduced by addition of sulfamic acid, DMSO and hydrogen peroxide.

  • PDF

Isolation, Characterization, and Control of Pseudomonas kribbensis and Pantoea vagans that cause Soft-rot Disease Isolated from Chinese Cabbages

  • Lee, Kang Wook;Kim, Geun Su;Kim, Jeong A;Kwon, Do Young;Lee, Jin Ju;Kim, Il Chul;Kim, Sang Gu;Kim, Tae Seok;Lee, Sang Yun
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.2
    • /
    • pp.55-62
    • /
    • 2022
  • The bacterial soft-rot disease is one of the most critical diseases in vegetables such as Chinese cabbage. The researchers isolated two bacteria (Pseudomonas kribbensis and Pantoea vagans) from diseased tissue samples of Chinese cabbages and confirmed them as being the strains that cause soft-rot disease. Lactic-acid bacteria (LAB), were screened and used to control soft-rot disease bacteria. The researchers tested the treatments with hypochlorous acid water (HAW) and LAB supernatant to control soft-rot disease bacteria. The tests confirmed that treatments with the HAW (over 120 ppm) or LAB (Lactobacillus plantarum PL203) culture supernatants (0.5 mL) completely controlled both P. kribbensis and P. vagans.

Establishment of Rice Bakanae Disease Management Using Slightly Acidic Hypochlorous Acid Water (미산성 차아염소산수를 이용한 벼키다리 병 방제)

  • Goo, Sung-Geun;Koo, Jachoon
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.178-185
    • /
    • 2020
  • Rice bakanae is a typical seed-borne and seed-transmitted disease caused by infection by Fusarium fujikuroi. Seed disinfection using chemical fungicides (such as benomyl and prochloraz) is most effective in controlling the disease, but the emergence of fungicide-resistant strains has recently been increasing. Slightly acidic hypochlorous acid water (SAHW) is a safe and environmentally friendly disinfectant that has a potent and broad spectrum of antimicrobial activity against viruses, bacteria, and fungi. In this study, we aimed to investigate the effectiveness of SAHW against F. fujikuroi strains, including chemical fungicide-resistant strains, as an alternative to conventional chemical fungicides in the management of bakanae disease. SAHW showed strong but similar levels of antifungal activity among the F. fujikuroi strains with a minimum inhibitory concentration (MIC90) of 5±2.5 ppm of free available chlorine (FAC). In addition, F. fujikuroi cells lost viability completely within 5 min of SAHW treatment due to the lethal damage to cell integrity. When the rice seeds infected by F. fujikuroi were treated with SAHW containing 20±10 ppm of FAC for 12 hr, the efficiencies of seed disinfection and disease control were 95-98% and 90.1-92.6%, respectively. Altogether, our data suggest that SAHW is an effective compound for controlling rice bakanae disease.

Analysis of Chlorine Species in Chlorine Dioxide Bleaching Liquor and Generation Process by UV-VIS Spectroscopy

  • Wang, Li-Jun;Lee, Seon-Ho;Yoon, Byung-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04a
    • /
    • pp.78-83
    • /
    • 1999
  • In this paper the extinction coefficients of molecule chlorine ($Cl_2$), chlorine dioxide (ClO$_2$), hypochlorous acid (HClO), chlorous acid ($HClO_2$$_2$) were determined using a PDA UV-VIS spectrophotometer. Based on these, the concentrations of $Cl_2$, $ClO_2$, and HClO in general chlorine dioxide bleaching liquor can be measured. The concentrations of $Cl_2$, $ClO_2$ and $HClO_2$ produced during the generation of methanol based chlorine dioxide generator can also be determined use the same method. The method was thought to be able to give more information in chlorine dioxide bleaching chemistry if combine its use with titration and ion chromatography.

  • PDF

Generation and Characteristics Analysis of Swine Manure for Introducing Biogas System (논문 - 바이오가스화 도입을 위한 양돈농가 가축분뇨 발생 및 특성분석)

  • Choi, Eun-Hee;Yoon, Young-Man;Kim, Chang-Hyun
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.25-32
    • /
    • 2011
  • The 21 livestock farms considering future installation of biogas systems were studied. These farms were examined how to raise the livestock, to treat manure, to operate facility with respect to manure characteristics. The 15 farms out of 21 farms have applied to the marine dumping and consignment treatment for treating manure and even farms which have equipped liquid fertilizing system have less capacity facility than legal standards. Characteristics of manure were affected by the scale of swine barn, clean water usage, frequency of cleaning, cleaning method, feces-urine separating method, etc. Retention time in storage (over 20 days) has resulted in lower concentration of organic matter which could reduce biogas production. This indicates that systematic barn management system is required. Inhibition tests showed that disinfectant and citric acid did not affected digestion rates at 10 times higher concentration than recommendation. However hypochlorous acid is likely to affect the anaerobic microbial activity.

  • PDF

Structural Determination of Oxidation Products of Flavonoids in Alcoholic Aqueous Solution with Reactive Oxygen Species

  • Hirose, Yuko;Kakita, Mitsuko;Washizu, Toshiyuki;Matsugo, Seiichi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.424-426
    • /
    • 2002
  • Recently, much attention has been paid to the physiological functions of flavonoids associated with their antioxidant properties. However, there was a lack of information on the molecular mechanism at which flavonoids play the antioxidative role. We have already studied on the oxidation of quercetin with hydrogen peroxide and sodium hypochlorite in alcoholic aqueous solution and determined the oxidation products. Through the structural analysis of the oxidation products, it was clarified that the hydroxyl group at C-3 in the C ring plays the important role in the antioxidative action of quercetin. Successively, rutin and (+)-catechin were oxidized with sodium hypochlorite and their mono- and di-chlorinated derivatives were obtained. These facts indicate that these flavonoids can directly scavenge hypochlorous acid and the active site in this scavenging reaction is not the hydroxyl group at C-3.

  • PDF