• Title/Summary/Keyword: Hyphae

Search Result 383, Processing Time 0.029 seconds

Protoplast Preparation and Regeneration from Young Hyphae of the Citrinin Producing Fungus Monascus ruber

  • Norlha, Tenzin;Lee, In-Hyung
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.543-546
    • /
    • 2005
  • Optimized conditions for protoplast preparation and regeneration from young hyphae of Monascus ruber were established. Heat shock treatment of spores gave rapid and synchronized germination. Spores collected from cultures grown for 7-8 days at $30^{\circ}C$ were germinated until over 70% germ tubes reached to 3-5 spore length. Enzymatic digestion of young hyphae was optimal with 50 mg/mL Glucanex in 0.1 M sodium citrate buffer containing 0.8 M mannitol as an osmotic stabilizer. Regeneration rate was around 10% when 0.8 M sorbitol was used as an osmotic stabilizer in regeneration medium. These conditions will be applied in genetic study of M. ruber that produces citrinin at high level and thus is good model strain for molecular genetic dissection of citrinin biosynthesis.

Ultrastructure of the Rust Fungus Puccinia miscanthi in the Teliospore Stage Interacting with the Biofuel Plant Miscanthus sinensis

  • Kim, Ki Woo
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.299-304
    • /
    • 2015
  • Interaction of the the rust fungus Puccinia miscanthi with the biofuel plant Miscanthus sinensis during the teliospore phase was investigated by light and electron microscopy. P. miscanthi telia were oval-shaped and present on both the adaxial and abaxial leaf surfaces. Teliospores were brown, one-septate (two-celled), and had pedicels attached to one end. Transmission electron microscopy revealed numerous electron-translucent lipid globules in the cytoplasm of teliospores. Extensive cell wall dissolution around hyphae was not observed in the host tissues beneath the telia. Hyphae were found between mesophyll cells in the leaf tissues as well as in host cells. Intracellular hyphae, possibly haustoria, possessed electron-dense fungal cell walls encased by an electron-transparent fibrillar extrahaustorial sheath that had an electron-dense extrahaustorial membrane. The infected host cells appeared to maintain their membrane-bound structures such as nuclei and chloroplasts. These results suggest that the rust fungus maintains its biotrophic phase with most mesophyll cells of M. sinensis. Such a nutritional mode would permit the rust fungus to obtain food reserves for transient growth in the course of host alteration.

Effects of the Myosin ATPase Inhibitor, 2,3-Butanedione-2-Monoxime, on Growth and Dimorphic Switches of Candida albicans

  • Woo, Mi-Young;Jwa, Mi-Ri;Kim, Jin-Mi;Song, Ki-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.606-611
    • /
    • 2000
  • Dimorphic yeast Candida albicans reversibly switches between the form of yeast and hyphae depending on external conditions. We investigated possible roles of the myosin family in the growth and dimorphic switches of C. albicans with a general myosin ATPase inhibitor, 2,3-butanedione-2-monoxime (BDM). Transition to hyphae as well as proliferation by budding was completely inhibited by BDM at 16 mM. Presence of 16 mM BDM did not affect hyphae-to-bud transition but it blocked budding. The effects of BDM on yeast growth and dimorphic switches were reversible. More than 70% of the BDM-treated cells demonstrated defects in the amount and the polarized localization of F-actin as well as in the shape and migration of the nucleus, suggesting that myosin activities are needed in these cellular processes of C. albicans.

  • PDF

Ultrastructure of Compatible and Incompatible Interactions of Pumpkin Stems Infected with Phytophthora capsici

  • Lee, Byung-Kook;Hong, Jeum-Kyu;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2001
  • Early infection process of Phytophthora capsici in pumpkin stems was similar in the compatible and incompatible interactions 24 h after inoculation. Intercellularly growing hyphae penetrated host parenchyma cells by growing hyphae penetrated host parenchyma cells by forming haustoria. An extrahaustorial matrix was found around the haustoria in both compatible and incompatible interactions. No wall appositions were observed at the infection sites in the parenchyma cells. In the compatible interaction, infecting hyphae grew well in the intercellular spaces between xylem vessels in stem tissues. Degraded host cell wall, plasmolysis of plasma membrane, and degenerated chloroplasts were pathological features of pumpkin stem tissues in both compatible and incompatible interactions. A characteristic host response in the resistant pumkin cultivar Danmatmaetdol was rapid cytoplasmic movement of host cells toward the oomycete haustoria.

  • PDF

Morphological Characteristics of Tricholoma matsutake Ectomycorrhiza (송이 외생균근(外生菌根)의 형태적(形態的) 특징(特徵))

  • Koo, Chang-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.1 s.158
    • /
    • pp.16-20
    • /
    • 2005
  • Tricholoma matsutake ectomycorrhizas are unique in their morphology: not bifurcated broom shaped roots with not easily wettable brilliant and profuse white hyphae. To understand these characteristics the ectomycorrhizas were investigated with electron microscopy. T. matsutake ectomycorrhiza have thin mantle and typical Hartig net development in the epidermis and cortex, but no fungal mantle on the root apex. There were no penetrating hyphae inside of the cells of either epidermis, cortex or stele. Inside of the walls of epidermis and cortex cells are lined with ca. $2{\mu}m$ hemispherical amyloplasts. The brilliant hyphal surface was covered with various fine amorphous granules. The hyphal cell wall was thin membrane less than $0.3{\mu}m$ thick. There is no clamp connection on the hyphae. This thin membraneous cell wall with high elasticity can be related to survival strategy of the species without plasmolysis under frequent soil water stress environment. And the coarse hyphal surface with some water repellency can control sudden inrush of water of the hyphae with an extremely low osmotic potential. It is concluded that no mantle on the tip can induce mycorrhizas not bifurcated and that finely coarse surface of T. matsutake hyphae can make the hyphae brilliantly white but less wetted.

Immunological Features of Macrophages Induced by Various Morphological Structures of Candida albicans

  • Han, Kyoung-Hee;Park, Su Jung;Choi, Sun Ju;Park, Joo Young;Lee, Kyoung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.1031-1040
    • /
    • 2013
  • Candida albicans is a dimorphic fungus that commensally colonizes human mucosal surfaces. The aim of this study was to assess the role of different C. albicans morphologies in inducing pattern recognition receptors (PRRs) and cytokines in macrophages. Macrophages may respond to pathogen-associated molecular patterns via TLR2 and TLR4 by expressing cytokines. The hyphal transition of C. albicans was induced by 20% serum (S), RPMI-1640 (R), or $39^{\circ}C$ culture (H). Macrophages were then challenged with either yeast (Y) or different hyphae cultures of C. albicans, followed by RT-PCR and FACS analysis of PRRs expression. In addition, macrophages were stimulated with either yeast or different hyphae cultures of C. albicans used by RT-PCR and Bio-Plex analysis of cytokines production. Macrophages expressed high levels of TLR4 and dectin-1 after stimulation with Y cells. In contrast, stimulation with H or R cells strongly increased the expression of TLR2 and dectin-2. Stimulation with Y cells significantly enhanced the expression of IL-$1{\beta}$ and weakly increased the expression of IL-6 and IL-12. Stimulation with hyphal cells (S, R, and H) strongly increased IL-10 expression, but weakly reduced IL-$1{\beta}$ expression. The phagocytosis activity and NO production of macrophages were decreased upon treatment with hyphal cells compared with yeast, and depended on the length of hyphae. In summary, the yeast and hyphae forms of C. albicans resulted in an induction of different PRRs, with accompanying differences in immune cell cytokine profiles.

Hyphal growth, auxiliary cell development and hyphal healing process of arbuscular mycorrhizal fungi, Gigaspora and Scutellospora genera (Gigaspora 속(屬)과 Scutellospora 속(屬) 아버스큘 균근균(菌根菌)의 균사생장(菌絲生長), 보조세포 발달(發達), 손상된 균사재생(菌絲再生)의 과정(過程))

  • Ka, Kang-Hyeon;Koo, Chang-Duck;Yi, Chang-Keun
    • The Korean Journal of Mycology
    • /
    • v.22 no.1
    • /
    • pp.36-45
    • /
    • 1994
  • Hyphal growth, auxiliary cell development and hyphal healing process of Gigaspora margarita, Scutellospora heterogama and S. verrucosa were investigated. The germinated hyphae from spores grew on the surface and the bottom of agar media. The hyphal growth on the surface stopped 19 to 23 days and the growth on the bottom 40 to 51 days after spore germination. Auxiliary cells began to develop 7 to 9 days after the spore germination in the media. The auxiliary cells almost always developed on the tip of a hypha branched from a secondary hypha. The cytoplasmic streaming rates in the hyphae of G. margarita and S. heterogama were $2.7\;to\;3.3\;{\mu}m/s\;and\;3.8\;to\;4.3\;{\mu}m/s$, respectively. The hyphae artificially cut were healed by connecting with a hypha grown from the spore-side hypha. We may suggest that the wound healing process of hyphae should be one of the characteristics obtained from symbiotic relationship between host plants and arbuscular mycorrhizal fungi for a long period of time.

  • PDF

The glyoxysomal nature of microbodies complexed with lipid globules in Botryospheria dothidea.

  • Kim, K.W;Park, E.W.;Kim, K.S.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.119.1-119
    • /
    • 2003
  • The glyoxysomal nature of microbodies was determined in Botryosphaeria dothidea hyphae based on morphology and in situ enzyme characteristics by transmission electron microscopy and cytochemistry. Bound by a single membrane, microbodies had a homogeneous matrix and varied in size ranging from 200 to 400 m in diameter. Microbodies had crystalline inclusion(s) which consisted of parallel arrays of fine tubules in their matrices. Microbodies and lipid globules were frequently placed in close association with each other, forming microbody-lipid globule complexes in hyphae. The cytochemical activities of catalase and malate synthase were localized in matrices of microbodies, showing intense electron-density of the organelle. In addition, the immunogold labeling detected the presence of catalase in multivesicular bodies and hyphal cell walls as well as in matrices and crystalline inclusions of microbodies, supporting the enzyme secretion through cell walls. Meanwhile, isocitrate Iyase was localized only in matrices of microbodies. These results suggest that microbodies, particularly complexed with lipid globules, in the fungal hyphae are functionally defined as glyoxysomes, where glyoxysomal enzymes are biochemically active for the glyoxylate cycle to be a metabolic pathway in gluconeogenesis. (Mycology and Fugus Diseases)

  • PDF

Characterization of Chitinase in Oak Tissues and Changes in Its Activity Related to Water Stress and Inoculation with Hypoxylon atropunctatum

  • Chun, Se-Chul;Fenn, Patrick;Kim, Kyung-Soo
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.144-151
    • /
    • 1999
  • Chitinase activities from Shumard oak tissues were determined to study changes in chitinase activities related to water stress. The enzyme extracted in sodium acetate buffer (0.1M, pH 4.5) was assayed by a colorimetric method. In addition, the fungal hyphae of Hypoxylon atropunctatum in xylem tissues of oak were observed through scanning electron microscopy. The enzyme in oak tissues was mainly endochitinase, and optimum pH for enzyme activity was 5. Specific chitinase activities from both of stems held under high relative humidity (ranges of 0.63-1.11 pKatal/$\mu\textrm{g}$ of protein) and stems held under low relative humidity (ranges of 0.41-0.99 pKatal/$\mu\textrm{g}$ of protein) were significantly increased following fungal inoculation with H. atropunctatum. However, there was no significant difference in chitinase activities between tissues held under high and low humidities, which might be due to fungal chitinase. Scanning electron microscopy showed holes in fungal hyphae in the xylem tissues of stems held under high humidity but not in the stems held under ow humidity, suggesting that hyphae might be hydrolyzed by plant hydolases such as chitinase.

  • PDF

Phenoloxidases and Photomorphogenesis in Coprinus congregatus (Coprinus congregatus의 분화와 Phenoloxidase와의 관계)

  • 최형태
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.157-167
    • /
    • 1987
  • The have been many reports that phenoloxidase are correlated with development in many fungi. C. congregatus, one of nushroom-forming basidiomycetes, which requires light for its development also has phenoloxidases. In C. congragatus, there are two sets of membrane-associated phenoloxidase (PHO I and PHO II) which are differentiated by their isozyme patterns, and each enzyme set consists of two different subtrate specific enzyme protein; o-tolidine reacting enzyme, and DOPA reacting enzyme. PHO I which is localized by a protoplast-concanavalin A technique by using a new solidifying agent, Pluronic Polyol F 127, instead of agar appears in the vegetative hyphae, and PHO II appears at the early primordial stage on agar and at the sclerotial stage of liquid shake cultures. Inhibition of PHO I with the enzyme inhibitors inhibits mushroom formation as well as melanization of the vegetative hyphae at concentrations which do not inhibit the vegetative growth. PHO I deficient mutants do not form mushrooms or melanins, and the mutants show abnormal nuclear migration patterns. PHO II has roles; possibly cementing the adjacent hyphae during the actual three dimensonal structure formation, and melanizing mushrooms and sclerotia. The possible roles of PHO I in the light reception complex and in melanin formation, the function of malanin, and possible roles of postulated post translational modifying enzymes which regulate the phenoloxidases, nuclear migration pattern, and self-nonself recognition mechanism are discussed.

  • PDF