• Title/Summary/Keyword: Hyperspectral analysis

Search Result 166, Processing Time 0.022 seconds

Scientific Examination of Kim Jeong-hee's "Buliseonrando" by Using Hyperspectral Image Analysis (초분광영상 분석을 활용한 김정희 필 불이선란도(不二禪蘭圖)의 과학적 조사)

  • Ko Soorin;Park Jinho;Lee Sujin
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.127-144
    • /
    • 2023
  • "Buliseonrando," meaning "Buddhist virtues and the orchid are one and the same," was painted by Chusa Kim Jeong-hee. Four appreciation sentences are written in various fonts around the orchid drawn in the center of the painting, along with a total of 15 seals stamped. Hyperspectral image analysis(HSI), microscopy, and X-ray fluorescence (XRF) were conducted with a focus on the seals and the parts of the painting that have been applied with a conservation treatment. As a result of the analyses, the seals were classified into two types-seals with or without barium content. Stamp shade was identified only in five of themstamps, which allows the assumption that the composition and material characteristics of the stamp inks varied depending on the period. In particular, hyperspectral image analysis confirms traces of conservation treatment on the seals and the lost parts identified in addition to the 15 seals, which also demonstrates the utility of hyperspectral image analysis.

Dimensionality Reduction Methods Analysis of Hyperspectral Imagery for Unsupervised Change Detection of Multi-sensor Images (이종 영상 간의 무감독 변화탐지를 위한 초분광 영상의 차원 축소 방법 분석)

  • PARK, Hong-Lyun;PARK, Wan-Yong;PARK, Hyun-Chun;CHOI, Seok-Keun;CHOI, Jae-Wan;IM, Hon-Ryang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2019
  • With the development of remote sensing sensor technology, it has become possible to acquire satellite images with various spectral information. In particular, since the hyperspectral image is composed of continuous and narrow spectral wavelength, it can be effectively used in various fields such as land cover classification, target detection, and environment monitoring. Change detection techniques using remote sensing data are generally performed through differences of data with same dimensions. Therefore, it has a disadvantage that it is difficult to apply to heterogeneous sensors having different dimensions. In this study, we have developed a change detection method applicable to hyperspectral image and high spat ial resolution satellite image with different dimensions, and confirmed the applicability of the change detection method between heterogeneous images. For the application of the change detection method, the dimension of hyperspectral image was reduced by using correlation analysis and principal component analysis, and the change detection algorithm used CVA. The ROC curve and the AUC were calculated using the reference data for the evaluation of change detection performance. Experimental results show that the change detection performance is higher when using the image generated by adequate dimensionality reduction than the case using the original hyperspectral image.

Evaluating Apparatus for the ICA-Aided Mixel Analysis of Periodical Hyperspectral Images

  • Shimozato, Masao;Kosaka, Naoko;Uto, Kuniaki;Kosugi, Yukio
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.411-413
    • /
    • 2003
  • In the images obtained from high altitude, several materials are mixed in one pixel and observed as a mixel. It makes difficult to separate the value of pure materials from obtained data. As mixel analysis, various techniques using Independent Component Analysis (ICA) and wavelet analysis, etc, were proposed. In this study, we applied to the ICA technique to real data collected by hyperspectral line sensor. Real data came under the influence of several effects regarded as basin on the convolution. We show that combining the ICA method with deconvolution improve it's estimation ability.

  • PDF

Comparative Study on Hyperspectral and Satellite Image for the Estimation of Chlorophyll a Concentration on Coastal Areas (연안 해역의 클로로필 농도 추정을 위한 초분광 및 위성 클로로필 영상 비교 연구)

  • Shin, Jisun;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.309-323
    • /
    • 2020
  • Estimation of chlorophyll a concentration (CHL) on coastal areas using remote sensing has been mostly performed through multi-spectral satellite image analysis. Recently, various studies using hyperspectral imagery have been attempted. In particular, airborne hyperspectral imagery is composed of hundreds of bands with a narrow band width and high spatial resolution, and thus may be more effective in coastal areas than estimation of CHL through conventional satellite image. In this study, comparative analysis of hyperspectral and satellite-based CHL images was performed to estimate CHL in coastal areas. As a result of analyzing CHL and seawater spectrum data obtained by field survey conducted on the south coast of Korea, the seawater spectrum with high CHL peaked near the wavelength bands of 570 and 680 nm. Using this spectral feature, a new band ratio of 570 / 490 nm for estimating CHL was proposed. Through regression analysis between band ratio and the measured CHL were generated new CHL empirical formula. Validation of new empirical formula using the measured CHL showed valid results, with R2 of 0.70, RMSE of 2.43 mg m-3, and mean bias of 3.46 mg m-3. As a result of applying the new empirical formula to hyperspectral and satellite images, the average RMSE between hyperspectral imagery and the measured CHL was 0.12 mg m-3, making it possible to estimate CHL with higher accuracy than multi-spectral satellite images. Through these results, it is expected that it is possible to provide more accurate and precise spatial distribution information of CHL in coastal areas by utilizing hyperspectral imagery.

Detection of E.coli biofilms with hyperspectral imaging and machine learning techniques

  • Lee, Ahyeong;Seo, Youngwook;Lim, Jongguk;Park, Saetbyeol;Yoo, Jinyoung;Kim, Balgeum;Kim, Giyoung
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.645-655
    • /
    • 2020
  • Bacteria are a very common cause of food poisoning. Moreover, bacteria form biofilms to protect themselves from harsh environments. Conventional detection methods for foodborne bacterial pathogens including the plate count method, enzyme-linked immunosorbent assays (ELISA), and polymerase chain reaction (PCR) assays require a lot of time and effort. Hyperspectral imaging has been used for food safety because of its non-destructive and real-time detection capability. This study assessed the feasibility of using hyperspectral imaging and machine learning techniques to detect biofilms formed by Escherichia coli. E. coli was cultured on a high-density polyethylene (HDPE) coupon, which is a main material of food processing facilities. Hyperspectral fluorescence images were acquired from 420 to 730 nm and analyzed by a single wavelength method and machine learning techniques to determine whether an E. coli culture was present. The prediction accuracy of a biofilm by the single wavelength method was 84.69%. The prediction accuracy by the machine learning techniques were 87.49, 91.16, 86.61, and 86.80% for decision tree (DT), k-nearest neighbor (k-NN), linear discriminant analysis (LDA), and partial least squares-discriminant analysis (PLS-DA), respectively. This result shows the possibility of using machine learning techniques, especially the k-NN model, to effectively detect bacterial pathogens and confirm food poisoning through hyperspectral images.

Development of a classification model for tomato maturity using hyperspectral imagery

  • Hye-Young Song;Byeong-Hyo Cho;Yong-Hyun Kim;Kyoung-Chul Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.1
    • /
    • pp.129-136
    • /
    • 2022
  • In this study, we aimed to develop a maturity classification model for tomatoes using hyperspectral imaging in the range of 400 - 1,000 nm. Fifty-seven tomatoes harvested in August and November of 2021 were used as the sample set, and hyperspectral data was extracted from the surfaces of these tomatoes. A combined method of SNV (standard normal variate) and SG (Savitzky-Golay) methods was used for the pre-processing of the hyperspectral data. In addition, the hyperspectral data were analyzed for all maturity stages and considering bandwidths with different FWHM (full width at half maximum) values of 2, 25, and 50 nm. The PCA (principal component analysis) method was used to analyze the principal components related to maturity stages for the tomatoes. As a result, 500 - 550 nm and 650 - 700 nm bands were found to be related to the maturity stages of tomatoes. In addition, PC1 and PC2 explained approximately 97% of the variance at all FWHM conditions and thus were used as input data for classification model training based on the SVM (support vector machine). The SVM models were able to classify tomato maturity into five stages (Green, Turning, Pink, Light red, and Red) with over 95% accuracy regardless of the FWHM condition. Therefore, it was considered that hyperspectral data with 50 nm FWHM and SVM is feasible for use in the classification of tomato maturity into five stages.

Discriminant analysis of grain flours for rice paper using fluorescence hyperspectral imaging system and chemometric methods

  • Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.633-644
    • /
    • 2020
  • Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.

A GENETIC ALGORITHM BASED FEATURE EXTRACTION TECHNIQUE FOR HYPERSPECTRAL IMAGERY

  • Ryu Byong Tae;Kim Choon-Woo;Kim Hakil;Lee Kyu Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.209-212
    • /
    • 2005
  • Hyperspectral data consists of more than 200 spectral bands that are highly correlated. In order to utilize hyperspectral data for classification, dimensional reduction or feature extraction is desired. By applying feature extraction, computational complexity of classification can be reduced and classification accuracy may be improved. In this paper, a genetic algorithm based feature extraction technique is proposed. Measure from discriminant analysis is utilized as optimization criterion. A subset of spectral bands is selected by genetic algorithm. Dimension of feature space is further reduced by linear transformation. Feasibility of the proposed technique is evaluated with AVIRIS data.

  • PDF

SUBPIXEL UNMIXING TECHNIQUE FOR DETECTION OF USEFUL MINERAL RESOURCES USING HYPERSPECTRAL IMAGERY

  • Hyun, Chang-Uk;Park, Hyeong-Dong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.66-67
    • /
    • 2008
  • Most mineral resources are located in subsurface but mineral exploration starts with a step of investigation in wide-area to find evidence of buried ores. Conventional technique for exploration on wide-area as a preliminary survey is an observation using naked eyes by geologist or chemical analysis using lots of samples obtained from target area. Hyperspectral remote sensing can overcome those subjective and time consuming survey and can produce mineral resources distribution map. Precise resource map requires information of mineral distribution in a subpixellevel because mineral is distributed as rock components or narrow veins. But most hyperspectral data is composed of pixels of several meters or more than ten meters scale. We reviewed subpixel unmixing algorithms which have been used for geological field and tested detection ability with Hyperion imagery, geological map and seven spectral curves of mineral and rock specimens which were obtained from study areas.

  • PDF

Hyperspectral Image Analysis (하이퍼스펙트럴 영상 분석)

  • 김한열;김인택
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.11
    • /
    • pp.634-643
    • /
    • 2003
  • This paper presents a method for detecting skin tumors on chicken carcasses using hyperspectral images. It utilizes both fluorescence and reflectance image information in hyperspectral images. A detection system that is built on this concept can increase detection rate and reduce processing time, because the procedure for detection can be simplified. Chicken carcasses are examined first using band ratio FCM information of fluorescence image and it results in candidate regions for skin tumor. Next classifier selects the real tumor spots using PCA components information of reflectance image from the candidate regions. For the real world application, real-time processing is a key issue in implementation and the proposed method can accommodate the requirement by using a limited number of features to maintain the low computational complexity. Nevertheless, it shows favorable results and, in addition, uncovers meaningful spectral bands for detecting tumors using hyperspectral image. The method and findings can be employed in implementing customized chicken tumor detection systems.