Pathogen infection in plants induces complex responses ranging from gene expression to metabolic processes in infected plants. In spite of many studies on biotic stress-related changes in host plants, little is known about the metabolic and phenotypic responses of the host plants to Pseudomonas cichorii infection based on image-based analysis. To investigate alterations in tomato plants according to disease severity, we inoculated plants with different cell densities of P. cichorii using dipping and syringe infiltration methods. High-dose inocula (${\geq}10^6cfu/ml$) induced evident necrotic lesions within one day that corresponded to bacterial growth in the infected tissues. Among the chlorophyll fluorescence parameters analyzed, changes in quantum yield of PSII (${\Phi}PSII$) and non-photochemical quenching (NPQ) preceded the appearance of visible symptoms, but maximum quantum efficiency of PSII ($F_v/F_m$) was altered well after symptom development. Visible/near infrared and chlorophyll fluorescence hyperspectral images detected changes before symptom appearance at low-density inoculation. The results of this study indicate that the P. cichorii infection severity can be detected by chlorophyll fluorescence assay and hyperspectral images prior to the onset of visible symptoms, indicating the feasibility of early detection of diseases. However, to detect disease development by hyperspectral imaging, more detailed protocols and analyses are necessary. Taken together, change in chlorophyll fluorescence is a good parameter for early detection of P. cichorii infection in tomato plants. In addition, image-based visualization of infection severity before visual damage appearance will contribute to effective management of plant diseases.
Yang, Chun-Chieh;Garrido-Novell, Cristobal;Perez-Marin, Dolores;Guerrero-Ginel, Jose E.;Garrido-Varo, Ana;Cho, Hyunjeong;Kim, Moon S.
Journal of Biosystems Engineering
/
제40권2호
/
pp.153-158
/
2015
Purpose: The research presented in this paper applied the chemometric analysis to the near-infrared spectral data from line-scanned hyperspectral images of beef and fish meals in animal feeds. The chemometric statistical models were developed to distinguish beef meals from fish ones. Methods: The meal samples of 40 fish meals and 15 beef meals were line-scanned to obtain hyperspectral images. The spectral data were retrieved from each of 3600 pixels in the Region of Interest (ROI) of every sample image. The wavebands spanning 969 nm to 1551 nm (across 176 spectral bands) were selected for chemometric analysis. The partial least squares regression (PLSR) and the principal component analysis (PCA) methods of the chemometric analysis were applied to the model development. The purpose of the models was to correctly classify as many beef pixels as possible while misclassified fish pixels in an acceptable amount. Results: The results showed that the success classification rates were 97.9% for beef samples and 99.4% for fish samples by the PLSR model, and 85.1% for beef samples and 88.2% for fish samples by the PCA model. Conclusion: The chemometric analysis-based PLSR and PCA models for the hyperspectral image analysis could differentiate beef meals from fish ones in animal feeds.
영상융합은 "특정 알고리즘의 사용을 통해 두 개 혹은 그 이상의 서로 다른 영상을 조합하여 새로운 영상을 만들어내는 것"을 뜻하며 원격탐사에서는 주로 낮은 공간해상도의 멀티스펙트럴 영상과 높은 공간해상도의 흑백영상을 융합하여 높은 공간해상도의 멀티스펙트럴 영상을 생성하는 것을 의미한다. 일반적으로 하이퍼스펙트럴 영상융합을 위해서는 기존의 멀티스펙트럴 영상융합 기법을 이용한 방법이나 분광혼합기법을 이용한 방법을 사용한다. 전자의 경우에는 분광정보가 손실될 가능성이 높으며, 후자의 경우는, endmember의 정보나 부가적인 데이터가 필요하고 결과 영상의 경우 공간적 정보가 상대적으로 부정확한 문제점을 보인다. 따라서 본 연구에서는 하이퍼스펙트럴 영상의 분광특성을 보존하기 위한 융합방법으로서 2단계 분광혼합기법을 사용한 영상융합 알고리즘을 제안하였으며 이를 실제 Hyperion, ALI 영상에 적용하여 평가하였다. 이를 통해 제안한 알고리즘에 의해서 융합된 결과가 PCA, GS 융합기법에 비해서 높은 공간, 분광 해상도를 유지할 수 있음을 보여주었다.
Detection in remotely sensed images can be conducted spatially, spectrally or both [2]. If the images have high spatial resolution, materials can be detected by using spatial and spectral information, unless we can't see the object embedded in a pixel. In this paper, we intend to solve the limit of spatial resolution by using the hyperspectral image which has high spectral resolution. Therefore, the Linear Spectral Mixing(LSM) Model which is sub-pixel detection algorithm is used to solve this problem. To find class Endmembers, we applied Geometric Model with MNF(Minimum Noise Fraction) transformation. From the result of sub-pixel detection algorithm, we can see the detection of water is satisfied and the object shape cannot be extracted but the possibility of material existence can be identified.
본 논문에서는 각기 다른 3가지 해상도로 촬영된 항공 초분광영상을 이용하여 건물, 도로, 산림 등 8가지 분류군에 대해 토지피복분류를 실시하고 정확도를 비교하는 연구를 수행하였다. 연구는 24밴드(0.5m 공간해상도), 48밴드(1.0m 공간해상도), 96밴드(1.5m 공간해상도)로 각각 1000m, 2000m, 3000m고도에서 촬영된 초분광영상을 이용하여 8가지 클래스에 대해 토지피복분류를 수행하였다. 그 결과 2000m고도에서 촬영된 48밴드 초분광영상을 이용하여 분류한 영상이 가장 높은 분류정확도를 보였고, 24밴드, 96밴드 순으로 분류정확도가 높게 나타났다. 초분광영상 활용에 있어서 1m 공간해상도에 48개밴드를 사용하여 토지피복분류를 수행함에 있어 적합함을 확인하였고 항공 초분광영상을 활용한 주제도 제작과 관련하여 정확도와 실용성 면에서 공간정보 품질이 개선될 것으로 기대한다.
The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.
하천환경을 구성하고 있는 복잡하고 다양한 인자의 특성에 따라 공간을 세밀하게 분류하기 위해서는 원격탐사(RS)를 통해 고해상도의 영상을 확보하는 것이 무엇보다 중요하다. 본 연구는 하천공간을 대상으로 환경 특성에 따른 공간 분류를 수행하기 위해 드론을 활용하여 취득한 고해상도 초분광 영상의 활용 가능성을 제시하고, 분류 결과에 대한 정확도를 평가하고자 하였다. 연구지역에서 획득한 초분광 영상은 노이즈로 인한 영향을 줄이고자 MNF와 PCA 기법으로 차원축소를 수행하였으며, MLC(Maximum Likelihood Classification)와 SVM(Support Vector Machine), SAM(Spectral Angle Mapping) 감독분류기법을 적용하여 하천환경특성에 따른 공간분류를 수행하였다. 연구 결과 MNF기법으로 차원 축소한 영상을 적용하여 MLC 감독분류를 수행하였을 때 가장 높은 분류정확도를 얻을 수 있었으나, 일부 클래스 및 수역의 경계와 그림자 공간에서 주로 오분류가 나타나는 것을 확인할 수 있었다. 이와 같은 연구 결과는 앞으로 드론과 초분광센서를 적용한 원격탐사를 위한 기초자료로 활용 할 수 있으며, 추가적인 알고리즘 개발을 통해 보다 광범위한 하천환경 분야에 적용할 수 있을 것으로 기대한다.
본 연구는 단일 임계값으로 결정된 변화화소를 버퍼존 개념을 적용하여 재추출함으로써, 보다 신뢰도 높은 무감독변화탐지를 수행하는데 목적이 있다. 우선, 그래프 생성기법과 직선과의 최대거리를 통해 결정된 임계값을 기반으로 세 개의 버퍼존을 생성하였다. 이 중 변화화소와 무변화화소가 혼재하는 구간인 버퍼존II에 대해 무감독분류를 수행하여 변화화소를 재추출하였다. Hyperion 초분광영상을 사용하여 제안기법을 적용하였으며, 단일 임계값 방법을 적용한 변화탐지 결과와의 비교를 통해 제안기법의 성능을 평가하였다. 결과를 통해, 버퍼존 기법이 다소 많은 변화화소를 추출하였으나, 산림지역에 대해 보다 정확한 변화탐지를 수행함을 확인할 수 있었다.
초분광 영상은 넓은 범위의 파장 영역의 유용한 정보를 많은 수의 밴드를 통해 취득한다. 하지만, 인접 밴드 간의 상관관계, 계산량, 노이즈로 인해 전처리없이 활용할 경우 부정확한 결과를 도출한다. 따라서 영상에서 노이즈 밴드 추출하여 제거하는 작업이 반드시 필요하다. 기존의 연구들은 영상 전체에 대한 특성치 만을 이용하였기 때문에 영상의 국지적 특성을 고려해야 한다. 본 연구에서는 Hyperion 영상을 대상으로 하였으며, 자료구조 기법 중 하나인 Quadtree와 이용하여 노이즈 밴드를 추출하였다. Quadtree 구조로 분할된 영역의 프랙탈 차원을 계산하고 프랙탈 차원의 분산을 이용하였다. Hyperion 영상에 존재하는 노이즈 종류 중 무작위 노이즈를 포함하고 있는 밴드 추출에 초점을 맞추었으며, 시각적으로 판단하여 작성한 참조자료와 비교하였다. 제안된 알고리즘 적용 결과 무작위 노이즈가 포함된 밴드 대부분이 추출되었으며, 영상에 관계없이 30개 이상의 노이즈 밴드를 제거할 수 있음을 확인하였다.
In this study, fluorescence hyperspectral imaging (FHSI) was used for the rapid, non-destructive detection of fake, manmade eggs from real eggs. To identify fake eggs, protoporphyrin IX (PpIX)-a natural pigment present in real eggshells-was utilized as the main indicator due to its strong fluorescence emission effect. The fluorescence images of real and fake eggs were acquired using a line-scan-based FHSI system, and their fluorescence features were analyzed based on spectroscopic techniques. To improve the detection performance and accuracy, an optimal waveband combination was investigated with analysis of variance (ANOVA), and its fluorescence ratio images (588/645 nm) were created for visualization of the real eggs between two different egg groups. In addition, real and fake eggs were scanned using a one-waveband (645 nm) handheld fluorescence imager that can perform real-time scanning for on-site applications. Then, the results of the two methods were compared with one another. The outcome clearly shows that the newly developed FHSI system and the fluorescence handheld imager were both able to distinguish real eggs from fake eggs. Consequently, FHSI showed a better performance (clearer images) compared to the fluorescence handheld imager, and the outcome provided valuable information about the feasibility of using FHSI imaging with ANOVA for the discrimination of real and fake eggs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.