• 제목/요약/키워드: Hyperspectral Images

검색결과 146건 처리시간 0.024초

Visual Analysis for Detection and Quantification of Pseudomonas cichorii Disease Severity in Tomato Plants

  • Rajendran, Dhinesh Kumar;Park, Eunsoo;Nagendran, Rajalingam;Hung, Nguyen Bao;Cho, Byoung-Kwan;Kim, Kyung-Hwan;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • 제32권4호
    • /
    • pp.300-310
    • /
    • 2016
  • Pathogen infection in plants induces complex responses ranging from gene expression to metabolic processes in infected plants. In spite of many studies on biotic stress-related changes in host plants, little is known about the metabolic and phenotypic responses of the host plants to Pseudomonas cichorii infection based on image-based analysis. To investigate alterations in tomato plants according to disease severity, we inoculated plants with different cell densities of P. cichorii using dipping and syringe infiltration methods. High-dose inocula (${\geq}10^6cfu/ml$) induced evident necrotic lesions within one day that corresponded to bacterial growth in the infected tissues. Among the chlorophyll fluorescence parameters analyzed, changes in quantum yield of PSII (${\Phi}PSII$) and non-photochemical quenching (NPQ) preceded the appearance of visible symptoms, but maximum quantum efficiency of PSII ($F_v/F_m$) was altered well after symptom development. Visible/near infrared and chlorophyll fluorescence hyperspectral images detected changes before symptom appearance at low-density inoculation. The results of this study indicate that the P. cichorii infection severity can be detected by chlorophyll fluorescence assay and hyperspectral images prior to the onset of visible symptoms, indicating the feasibility of early detection of diseases. However, to detect disease development by hyperspectral imaging, more detailed protocols and analyses are necessary. Taken together, change in chlorophyll fluorescence is a good parameter for early detection of P. cichorii infection in tomato plants. In addition, image-based visualization of infection severity before visual damage appearance will contribute to effective management of plant diseases.

Differentiation of Beef and Fish Meals in Animal Feeds Using Chemometric Analytic Models

  • Yang, Chun-Chieh;Garrido-Novell, Cristobal;Perez-Marin, Dolores;Guerrero-Ginel, Jose E.;Garrido-Varo, Ana;Cho, Hyunjeong;Kim, Moon S.
    • Journal of Biosystems Engineering
    • /
    • 제40권2호
    • /
    • pp.153-158
    • /
    • 2015
  • Purpose: The research presented in this paper applied the chemometric analysis to the near-infrared spectral data from line-scanned hyperspectral images of beef and fish meals in animal feeds. The chemometric statistical models were developed to distinguish beef meals from fish ones. Methods: The meal samples of 40 fish meals and 15 beef meals were line-scanned to obtain hyperspectral images. The spectral data were retrieved from each of 3600 pixels in the Region of Interest (ROI) of every sample image. The wavebands spanning 969 nm to 1551 nm (across 176 spectral bands) were selected for chemometric analysis. The partial least squares regression (PLSR) and the principal component analysis (PCA) methods of the chemometric analysis were applied to the model development. The purpose of the models was to correctly classify as many beef pixels as possible while misclassified fish pixels in an acceptable amount. Results: The results showed that the success classification rates were 97.9% for beef samples and 99.4% for fish samples by the PLSR model, and 85.1% for beef samples and 88.2% for fish samples by the PCA model. Conclusion: The chemometric analysis-based PLSR and PCA models for the hyperspectral image analysis could differentiate beef meals from fish ones in animal feeds.

2단계 분광혼합기법 기반의 하이퍼스펙트럴 영상융합 알고리즘 (Hyperspectral Image Fusion Algorithm Based on Two-Stage Spectral Unmixing Method)

  • 최재완;김대성;이병길;유기윤;김용일
    • 대한원격탐사학회지
    • /
    • 제22권4호
    • /
    • pp.295-304
    • /
    • 2006
  • 영상융합은 "특정 알고리즘의 사용을 통해 두 개 혹은 그 이상의 서로 다른 영상을 조합하여 새로운 영상을 만들어내는 것"을 뜻하며 원격탐사에서는 주로 낮은 공간해상도의 멀티스펙트럴 영상과 높은 공간해상도의 흑백영상을 융합하여 높은 공간해상도의 멀티스펙트럴 영상을 생성하는 것을 의미한다. 일반적으로 하이퍼스펙트럴 영상융합을 위해서는 기존의 멀티스펙트럴 영상융합 기법을 이용한 방법이나 분광혼합기법을 이용한 방법을 사용한다. 전자의 경우에는 분광정보가 손실될 가능성이 높으며, 후자의 경우는, endmember의 정보나 부가적인 데이터가 필요하고 결과 영상의 경우 공간적 정보가 상대적으로 부정확한 문제점을 보인다. 따라서 본 연구에서는 하이퍼스펙트럴 영상의 분광특성을 보존하기 위한 융합방법으로서 2단계 분광혼합기법을 사용한 영상융합 알고리즘을 제안하였으며 이를 실제 Hyperion, ALI 영상에 적용하여 평가하였다. 이를 통해 제안한 알고리즘에 의해서 융합된 결과가 PCA, GS 융합기법에 비해서 높은 공간, 분광 해상도를 유지할 수 있음을 보여주었다.

기하학적 기법을 이용한 하이퍼스펙트럴 영상의 Linear Spectral Mixing모델에 관한 연구 (A Study on Linear Spectral Mixing Model for Hyperspectral Imagery with Geometric Method)

  • 장은석;김대성;김용일
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2003년도 추계학술대회논문집
    • /
    • pp.23-29
    • /
    • 2003
  • Detection in remotely sensed images can be conducted spatially, spectrally or both [2]. If the images have high spatial resolution, materials can be detected by using spatial and spectral information, unless we can't see the object embedded in a pixel. In this paper, we intend to solve the limit of spatial resolution by using the hyperspectral image which has high spectral resolution. Therefore, the Linear Spectral Mixing(LSM) Model which is sub-pixel detection algorithm is used to solve this problem. To find class Endmembers, we applied Geometric Model with MNF(Minimum Noise Fraction) transformation. From the result of sub-pixel detection algorithm, we can see the detection of water is satisfied and the object shape cannot be extracted but the possibility of material existence can be identified.

  • PDF

해상도변화에 따른 항공초분광영상 토지피복분류의 분류정확도 비교 연구 (Study of Comparison of Classification Accuracy of Airborne Hyperspectral Image Land Cover Classification though Resolution Change)

  • 조형갑;김동욱;신정일
    • 대한공간정보학회지
    • /
    • 제22권3호
    • /
    • pp.155-160
    • /
    • 2014
  • 본 논문에서는 각기 다른 3가지 해상도로 촬영된 항공 초분광영상을 이용하여 건물, 도로, 산림 등 8가지 분류군에 대해 토지피복분류를 실시하고 정확도를 비교하는 연구를 수행하였다. 연구는 24밴드(0.5m 공간해상도), 48밴드(1.0m 공간해상도), 96밴드(1.5m 공간해상도)로 각각 1000m, 2000m, 3000m고도에서 촬영된 초분광영상을 이용하여 8가지 클래스에 대해 토지피복분류를 수행하였다. 그 결과 2000m고도에서 촬영된 48밴드 초분광영상을 이용하여 분류한 영상이 가장 높은 분류정확도를 보였고, 24밴드, 96밴드 순으로 분류정확도가 높게 나타났다. 초분광영상 활용에 있어서 1m 공간해상도에 48개밴드를 사용하여 토지피복분류를 수행함에 있어 적합함을 확인하였고 항공 초분광영상을 활용한 주제도 제작과 관련하여 정확도와 실용성 면에서 공간정보 품질이 개선될 것으로 기대한다.

Adaptive Hyperspectral Image Classification Method Based on Spectral Scale Optimization

  • Zhou, Bing;Bingxuan, Li;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.270-277
    • /
    • 2021
  • The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.

UAV를 활용한 초분광 영상의 하천공간특성 분류 연구 (The Study on Spatial Classification of Riverine Environment using UAV Hyperspectral Image)

  • 김영주;한형준;강준구
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.633-639
    • /
    • 2018
  • 하천환경을 구성하고 있는 복잡하고 다양한 인자의 특성에 따라 공간을 세밀하게 분류하기 위해서는 원격탐사(RS)를 통해 고해상도의 영상을 확보하는 것이 무엇보다 중요하다. 본 연구는 하천공간을 대상으로 환경 특성에 따른 공간 분류를 수행하기 위해 드론을 활용하여 취득한 고해상도 초분광 영상의 활용 가능성을 제시하고, 분류 결과에 대한 정확도를 평가하고자 하였다. 연구지역에서 획득한 초분광 영상은 노이즈로 인한 영향을 줄이고자 MNF와 PCA 기법으로 차원축소를 수행하였으며, MLC(Maximum Likelihood Classification)와 SVM(Support Vector Machine), SAM(Spectral Angle Mapping) 감독분류기법을 적용하여 하천환경특성에 따른 공간분류를 수행하였다. 연구 결과 MNF기법으로 차원 축소한 영상을 적용하여 MLC 감독분류를 수행하였을 때 가장 높은 분류정확도를 얻을 수 있었으나, 일부 클래스 및 수역의 경계와 그림자 공간에서 주로 오분류가 나타나는 것을 확인할 수 있었다. 이와 같은 연구 결과는 앞으로 드론과 초분광센서를 적용한 원격탐사를 위한 기초자료로 활용 할 수 있으며, 추가적인 알고리즘 개발을 통해 보다 광범위한 하천환경 분야에 적용할 수 있을 것으로 기대한다.

구간평균 그래프 기반의 버퍼존 개념을 적용한 Hyperion 초분광영상의 변화화소 추출 (Extraction of Changed Pixels for Hyperion Hyperspectral Images Using Range Average Based Buffer Zone Concept)

  • 김대성;편무욱
    • 한국측량학회지
    • /
    • 제29권5호
    • /
    • pp.487-496
    • /
    • 2011
  • 본 연구는 단일 임계값으로 결정된 변화화소를 버퍼존 개념을 적용하여 재추출함으로써, 보다 신뢰도 높은 무감독변화탐지를 수행하는데 목적이 있다. 우선, 그래프 생성기법과 직선과의 최대거리를 통해 결정된 임계값을 기반으로 세 개의 버퍼존을 생성하였다. 이 중 변화화소와 무변화화소가 혼재하는 구간인 버퍼존II에 대해 무감독분류를 수행하여 변화화소를 재추출하였다. Hyperion 초분광영상을 사용하여 제안기법을 적용하였으며, 단일 임계값 방법을 적용한 변화탐지 결과와의 비교를 통해 제안기법의 성능을 평가하였다. 결과를 통해, 버퍼존 기법이 다소 많은 변화화소를 추출하였으나, 산림지역에 대해 보다 정확한 변화탐지를 수행함을 확인할 수 있었다.

Quadtree 구조 및 프랙탈 특성을 이용한 Hyperion 영상의 노이즈 밴드 추출 (Noise Band Extraction of Hyperion Image using Quadtree Structure and Fractal Characteristic)

  • 장안진;김용일
    • 대한원격탐사학회지
    • /
    • 제26권5호
    • /
    • pp.489-495
    • /
    • 2010
  • 초분광 영상은 넓은 범위의 파장 영역의 유용한 정보를 많은 수의 밴드를 통해 취득한다. 하지만, 인접 밴드 간의 상관관계, 계산량, 노이즈로 인해 전처리없이 활용할 경우 부정확한 결과를 도출한다. 따라서 영상에서 노이즈 밴드 추출하여 제거하는 작업이 반드시 필요하다. 기존의 연구들은 영상 전체에 대한 특성치 만을 이용하였기 때문에 영상의 국지적 특성을 고려해야 한다. 본 연구에서는 Hyperion 영상을 대상으로 하였으며, 자료구조 기법 중 하나인 Quadtree와 이용하여 노이즈 밴드를 추출하였다. Quadtree 구조로 분할된 영역의 프랙탈 차원을 계산하고 프랙탈 차원의 분산을 이용하였다. Hyperion 영상에 존재하는 노이즈 종류 중 무작위 노이즈를 포함하고 있는 밴드 추출에 초점을 맞추었으며, 시각적으로 판단하여 작성한 참조자료와 비교하였다. 제안된 알고리즘 적용 결과 무작위 노이즈가 포함된 밴드 대부분이 추출되었으며, 영상에 관계없이 30개 이상의 노이즈 밴드를 제거할 수 있음을 확인하였다.

Non-destructive identification of fake eggs using fluorescence spectral analysis and hyperspectral imaging

  • Geonwoo, Kim;Ritu, Joshi;Rahul, Joshi;Moon S., Kim;Insuck, Baek;Juntae, Kim;Eun-Sung, Park;Hoonsoo, Lee;Changyeun, Mo;Byoung-Kwan, Cho
    • 농업과학연구
    • /
    • 제49권3호
    • /
    • pp.495-510
    • /
    • 2022
  • In this study, fluorescence hyperspectral imaging (FHSI) was used for the rapid, non-destructive detection of fake, manmade eggs from real eggs. To identify fake eggs, protoporphyrin IX (PpIX)-a natural pigment present in real eggshells-was utilized as the main indicator due to its strong fluorescence emission effect. The fluorescence images of real and fake eggs were acquired using a line-scan-based FHSI system, and their fluorescence features were analyzed based on spectroscopic techniques. To improve the detection performance and accuracy, an optimal waveband combination was investigated with analysis of variance (ANOVA), and its fluorescence ratio images (588/645 nm) were created for visualization of the real eggs between two different egg groups. In addition, real and fake eggs were scanned using a one-waveband (645 nm) handheld fluorescence imager that can perform real-time scanning for on-site applications. Then, the results of the two methods were compared with one another. The outcome clearly shows that the newly developed FHSI system and the fluorescence handheld imager were both able to distinguish real eggs from fake eggs. Consequently, FHSI showed a better performance (clearer images) compared to the fluorescence handheld imager, and the outcome provided valuable information about the feasibility of using FHSI imaging with ANOVA for the discrimination of real and fake eggs.