• 제목/요약/키워드: Hyperspectral Data

검색결과 201건 처리시간 0.024초

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • 한국측량학회지
    • /
    • 제36권3호
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

IMAGING SPECTROMETRY FOR DETECTING FECES AND INGESTA ON POULTRY CARCASSES

  • Park, Bo-Soon;William R.Windham;Kurt C.Lawrence;Smith, Douglas-P
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.3106-3106
    • /
    • 2001
  • Imaging spectrometry or hyperspectral imaging is a recent development that makes possible quantitative and qualitative measurement for food quality and safety. This paper presents the research results that a hyperspectral imaging system can be used effectively for detecting fecal (from duodenum, cecum, and colon) and ingesta contamination on poultry carcasses from the different feed meals (wheat, mile, and corn with soybean) for poultry safety inspection. A hyperspectral imaging system has been developed and tested for the identification of fecal and ingesta surface contamination on poultry carcasses. Hypercube image data including both spectral and spatial domains between 430 and 900 nm were acquired from poultry carcasses with fecal and ingesta contamination. A transportable hyperspectral imaging system including fiber optically fabricated line lights, motorized lens control for line scans, and hypercube image data from contaminated carcasses with different feeds are presented. Calibration method of a hyperspectral imaging system is demonstrated using different lighting sources and reflectance panels. Principal Component and Minimum Noise Fraction transformations will be discussed to characterize hyperspectral images and further image processing algorithms such as image band ratio of dual-wavelength images and its histogram stretching with thresholding process will be demonstrated to identify fecal and ingesta materials on poultry carcasses. This algorithm could be further applied for real-time classification of fecal and ingesta contamination on poultry carcasses in the poultry processing line.

  • PDF

Single-Kernel Corn Analysis by Hyperspectral Imaging

  • Cogdill, R.P.;Hurburgh Jr., C.R.;Jensen, T.C.;Jones, R.W.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1521-1521
    • /
    • 2001
  • The objective of the research being presented was to construct and calibrate a spectrometer for the analysis of single kernels of corn. In light of the difficulties associated with capturing the spatial variability in composition of corn kernels by single-beam spectrometry, a hyperspectral imaging spectrometer was constructed with the intention that it would be used to analyze single kernels of corn for the prediction of moisture and oil content. The spectrometer operated in the range of 750- 1090 nanometers. After evaluating four methods of standardizing the output from the spectrometer, calibrations were made to predict whole-kernel moisture and oil content from the hyperspectral image data. A genetic algorithm was employed to reduce the number of wavelengths imaged and to optimize the calibrations. The final standard errors of prediction during cross-validation (SEPCV) were 1.22% and 1.25% for moisture and oil content, respectively. It was determined, by analysis of variance, that the accuracy and precision of single-kernel corn analysis by hyperspectral imaging is superior to the single kernel reference chemistry method (as tested).

  • PDF

SUBPIXEL UNMIXING TECHNIQUE FOR DETECTION OF USEFUL MINERAL RESOURCES USING HYPERSPECTRAL IMAGERY

  • Hyun, Chang-Uk;Park, Hyeong-Dong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.66-67
    • /
    • 2008
  • Most mineral resources are located in subsurface but mineral exploration starts with a step of investigation in wide-area to find evidence of buried ores. Conventional technique for exploration on wide-area as a preliminary survey is an observation using naked eyes by geologist or chemical analysis using lots of samples obtained from target area. Hyperspectral remote sensing can overcome those subjective and time consuming survey and can produce mineral resources distribution map. Precise resource map requires information of mineral distribution in a subpixellevel because mineral is distributed as rock components or narrow veins. But most hyperspectral data is composed of pixels of several meters or more than ten meters scale. We reviewed subpixel unmixing algorithms which have been used for geological field and tested detection ability with Hyperion imagery, geological map and seven spectral curves of mineral and rock specimens which were obtained from study areas.

  • PDF

산림지역의 항공기 탑재 하이퍼스펙트럴 영상에 대한 식생-Endmember와 식생지수의 상관 분석 (Correlation Analysis with Vegetation Indices and Vegetation-Endmembers From Airborne Hyperspectral Data in Forest Area)

  • 김태우;위광재;서용철
    • 한국지리정보학회지
    • /
    • 제15권3호
    • /
    • pp.52-65
    • /
    • 2012
  • 작물과 산림을 포함한 식생에 대한 순1차 생산(net primary production, NPP)와 총1차 생산(gross primary production, GPP)은 바이오매스와 식생의 탄소저장과 밀접한 관련이 있으며, 원격탐사를 이용해 바이오매스를 추정하는 많은 노력이 이루어지고 있다. 바이오매스는 광합성에 매우 중요한 요소인 클로로필(엽록소)의 총 함유량으로 추정할 수 있는데, 클로로필을 추정하기 위해서 다양한 식생지수들이 개발되었다. 식생지수들은 개발에 사용된 식생의 종류와 원격탐사 데이터에 따라 조금씩 차이를 가지고 있다. 하이퍼스펙트럴 영상은 다중분광 영상에 비하여 세분화된 각 파장대마다 물질에 따른 반사 및 흡수 특성이 다르기 때문에, 기존의 식생지수를 그대로 사용하기에 무리가 따른다. 본 연구는 항공기 탑재 하이퍼스펙트럴 영상을 이용하여 산림에 대한 바이오매스 추정을 위한 매개변수로 활용되는 적합한 식생지수는 무엇인지 평가하는 것을 목적으로 한다. 이를 위해 하이퍼스펙트럴 영상의 밴드 특성을 고려하여 다수의 식생지수 산출식 중 9개를 선정하고, SMA(spectral mixture analysis)를 통하여 대상지역의 산림을 대표하는 3개의 endmember를 추출하였다. 9개의 식생지수와 추출된 endmembers의 상관관계를 분석하였다. 상관분석 결과는 산림이 분포된 지역에서 Pearson 상관계수는 MTVI1과 TVI가 0.877의 상관계수를 가졌으며, 식생이 적고 토양의 분포가 확연한 지역에서는 MCARI가 0.9061로 매우 높은 상관계수를 보였다. 전반적으로 MTVI1과 TVI이 0.757의 동일한 상관계수를 가지며 식생에 대한 3개의 endmember를 가장 잘 설명하는 것으로 나타났다.

A HIERARCHICAL APPROACH TO HIGH-RESOLUTION HYPERSPECTRAL IMAGE CLASSIFICATION OF LITTLE MIAMI RIVER WATERSHED FOR ENVIRONMENTAL MODELING

  • Heo, Joon;Troyer, Michael;Lee, Jung-Bin;Kim, Woo-Sun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.647-650
    • /
    • 2006
  • Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery was acquired over the Little Miami River Watershed (1756 square miles) in Ohio, U.S.A., which is one of the largest hyperspectral image acquisition. For the development of a 4m-resolution land cover dataset, a hierarchical approach was employed using two different classification algorithms: 'Image Object Segmentation' for level-1 and 'Spectral Angle Mapper' for level-2. This classification scheme was developed to overcome the spectral inseparability of urban and rural features and to deal with radiometric distortions due to cross-track illumination. The land cover class members were lentic, lotic, forest, corn, soybean, wheat, dry herbaceous, grass, urban barren, rural barren, urban/built, and unclassified. The final phase of processing was completed after an extensive Quality Assurance and Quality Control (QA/QC) phase. With respect to the eleven land cover class members, the overall accuracy with a total of 902 reference points was 83.9% at 4m resolution. The dataset is available for public research, and applications of this product will represent an improvement over more commonly utilized data of coarser spatial resolution such as National Land Cover Data (NLCD).

  • PDF

초분광 기술을 이용한 다수의 유묘 내 안토시아닌 함량 측정 (Measurement of Anthocyanin Accumulations in Multiple Seedling Plants Using Hyperspectral Imaging Technology)

  • 김효석;정영철
    • 한국광학회지
    • /
    • 제32권5호
    • /
    • pp.215-219
    • /
    • 2021
  • 최근 농작물의 상황을 실시간이면서도 비파괴적으로 측정하는 시스템이 스마트팜 등의 분야에서 필수적인 요소로 주목받고 있다. 본 연구에서는 초분광 영상 기술을 통해 많은 개체 수의 청경채 유묘 내의 안토시아닌 함량을 비파괴적으로 동시에 측정하였다. 많은 유묘의 동시 측정을 위해서, 기존의 초분광 영상 시스템의 실험 구성을 수정하였다. 품종당 24개씩 총 96개의 유묘를 측정하였고, 한번의 초분광 데이터 획득시 12개의 유묘가 동시에 분석 가능했으며, 총 3분이 소요된다. 본 논문에서 제안한 초분광 영상 기술은 파괴적 화학 분석 방법과 비교 가능한 분석 시스템을 제공하는 것으로 나타났다. 또한 많은 수의 식물을 동시에 측정함으로써, 초분광 영상 기술이 초고속 피노타이핑 시스템에 적용될 수 있다는 가능성을 확인하였다.

분광 상호정보를 이용한 하이퍼스펙트럴 영상분류 (Classification of Hyperspectral Images Using Spectral Mutual Information)

  • 변영기;어영담;유기윤
    • 대한공간정보학회지
    • /
    • 제15권3호
    • /
    • pp.33-39
    • /
    • 2007
  • 하이퍼스펙트럴 영상자료는 객체에 대한 많은 정보를 함유하고 있어 객체의 보다 정확한 분류가 가능하다. 본 논문에서는 하이퍼스펙트럴 영상분류를 위하여 SMI(Spectral Mutual Information)이라는 새로운 스펙트럼 유사도 측정기법을 제안하였다. 본 방법은 정보이론 분야에서 대두된 상호정보량의 개념을 차용하여 고안되었으며 스펙트럼간의 통계적 의존성을 측정할 수 있다. SMI는 영상의 각 화소스펙트럼을 확률변수로 간주하고 두 스펙트럼간의 유사 상호정보량을 통하여 유사도를 측정함으로써 영상을 분류한다. 제안된 기법의 효율성을 평가하기 위해 기존에 개발된 SAM, SSV 분류기법을 이용하여 동일지역에 대해 분류를 수행하고 분류 정확도를 비교 평가하였다. 실험결과 제안한 SMI 기법은 하이퍼스펙트럴 영상분류에 유용하게 적용될 수 있으리라 판단된다.

  • PDF

Possibility of non-invasive diagnostic method for Kudoa septempunctata using a hyperspectral camera

  • Eung Jun Lee;Lyu Jin Jun;Young Juhn Lee;Yeong Eun Oh;Sung Hyun Kim;Heung-soe Kim;Ye Ji Kim;Joon Bum Jeong
    • 한국어병학회지
    • /
    • 제37권1호
    • /
    • pp.89-96
    • /
    • 2024
  • Kudoa septempunctata, a myxozoan parasite, usually presents without any signs and primarily infects adult fish. The invasive diagnostic methods, such as tissue biopsy, can identify pathogens, but cause economic losses because they require killing the fish. In this study, we conducted a monitoring of four fish farms located on Jeju Island, to investigate the potential for non-invasive diagnosis of K. septempunctata using hyperspectral cameras. It provides spectral information from R000_B000_G000 to R255_B255_G255 for a total of 3,282 olive flounder (Paralichthys olivaceus). Each object is imaged with 2,000 data points, allowing comprehensive spectral analysis by comparing images obtained from negative control objects to positive control objects. Noticeable differences were observed in the brightness or pallor of the positive control images. This suggests the potential utility of hyperspectral imaging as a non-invasive diagnostic tool for detecting K. septempunctata infections in fish populations.

The Endmember Analysis for Sub-Pixel Detection Using the Hyperspectral Image

  • Kim, Dae-Sung;Cho, Young-Wook;Han, Dong-Yeob;Kim, Young-Il
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.732-734
    • /
    • 2003
  • In the middle -resolution remote sensing, the Ground Sampled Distance(GSD) sensed and sampled by the detector is generally larger than the size of objects(or materials) of interest, in which case several objects are embedded in a single pixel and cannot be detected spatially. This study is intended to solve this problem of a hyperspectral data with high spectral resolution. We examined the detection algorithm, Linear Spectral Mixing Model, and also made a test on the Hyperion data. To find class Endmembers, we applied two methods, Spectral Library and Geometric Model, and compared them with each other.

  • PDF