Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
한국측량학회지
/
제36권3호
/
pp.135-152
/
2018
The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.
Park, Bo-Soon;William R.Windham;Kurt C.Lawrence;Smith, Douglas-P
한국근적외분광분석학회:학술대회논문집
/
한국근적외분광분석학회 2001년도 NIR-2001
/
pp.3106-3106
/
2001
Imaging spectrometry or hyperspectral imaging is a recent development that makes possible quantitative and qualitative measurement for food quality and safety. This paper presents the research results that a hyperspectral imaging system can be used effectively for detecting fecal (from duodenum, cecum, and colon) and ingesta contamination on poultry carcasses from the different feed meals (wheat, mile, and corn with soybean) for poultry safety inspection. A hyperspectral imaging system has been developed and tested for the identification of fecal and ingesta surface contamination on poultry carcasses. Hypercube image data including both spectral and spatial domains between 430 and 900 nm were acquired from poultry carcasses with fecal and ingesta contamination. A transportable hyperspectral imaging system including fiber optically fabricated line lights, motorized lens control for line scans, and hypercube image data from contaminated carcasses with different feeds are presented. Calibration method of a hyperspectral imaging system is demonstrated using different lighting sources and reflectance panels. Principal Component and Minimum Noise Fraction transformations will be discussed to characterize hyperspectral images and further image processing algorithms such as image band ratio of dual-wavelength images and its histogram stretching with thresholding process will be demonstrated to identify fecal and ingesta materials on poultry carcasses. This algorithm could be further applied for real-time classification of fecal and ingesta contamination on poultry carcasses in the poultry processing line.
The objective of the research being presented was to construct and calibrate a spectrometer for the analysis of single kernels of corn. In light of the difficulties associated with capturing the spatial variability in composition of corn kernels by single-beam spectrometry, a hyperspectral imaging spectrometer was constructed with the intention that it would be used to analyze single kernels of corn for the prediction of moisture and oil content. The spectrometer operated in the range of 750- 1090 nanometers. After evaluating four methods of standardizing the output from the spectrometer, calibrations were made to predict whole-kernel moisture and oil content from the hyperspectral image data. A genetic algorithm was employed to reduce the number of wavelengths imaged and to optimize the calibrations. The final standard errors of prediction during cross-validation (SEPCV) were 1.22% and 1.25% for moisture and oil content, respectively. It was determined, by analysis of variance, that the accuracy and precision of single-kernel corn analysis by hyperspectral imaging is superior to the single kernel reference chemistry method (as tested).
대한원격탐사학회 2008년도 International Symposium on Remote Sensing
/
pp.66-67
/
2008
Most mineral resources are located in subsurface but mineral exploration starts with a step of investigation in wide-area to find evidence of buried ores. Conventional technique for exploration on wide-area as a preliminary survey is an observation using naked eyes by geologist or chemical analysis using lots of samples obtained from target area. Hyperspectral remote sensing can overcome those subjective and time consuming survey and can produce mineral resources distribution map. Precise resource map requires information of mineral distribution in a subpixellevel because mineral is distributed as rock components or narrow veins. But most hyperspectral data is composed of pixels of several meters or more than ten meters scale. We reviewed subpixel unmixing algorithms which have been used for geological field and tested detection ability with Hyperion imagery, geological map and seven spectral curves of mineral and rock specimens which were obtained from study areas.
작물과 산림을 포함한 식생에 대한 순1차 생산(net primary production, NPP)와 총1차 생산(gross primary production, GPP)은 바이오매스와 식생의 탄소저장과 밀접한 관련이 있으며, 원격탐사를 이용해 바이오매스를 추정하는 많은 노력이 이루어지고 있다. 바이오매스는 광합성에 매우 중요한 요소인 클로로필(엽록소)의 총 함유량으로 추정할 수 있는데, 클로로필을 추정하기 위해서 다양한 식생지수들이 개발되었다. 식생지수들은 개발에 사용된 식생의 종류와 원격탐사 데이터에 따라 조금씩 차이를 가지고 있다. 하이퍼스펙트럴 영상은 다중분광 영상에 비하여 세분화된 각 파장대마다 물질에 따른 반사 및 흡수 특성이 다르기 때문에, 기존의 식생지수를 그대로 사용하기에 무리가 따른다. 본 연구는 항공기 탑재 하이퍼스펙트럴 영상을 이용하여 산림에 대한 바이오매스 추정을 위한 매개변수로 활용되는 적합한 식생지수는 무엇인지 평가하는 것을 목적으로 한다. 이를 위해 하이퍼스펙트럴 영상의 밴드 특성을 고려하여 다수의 식생지수 산출식 중 9개를 선정하고, SMA(spectral mixture analysis)를 통하여 대상지역의 산림을 대표하는 3개의 endmember를 추출하였다. 9개의 식생지수와 추출된 endmembers의 상관관계를 분석하였다. 상관분석 결과는 산림이 분포된 지역에서 Pearson 상관계수는 MTVI1과 TVI가 0.877의 상관계수를 가졌으며, 식생이 적고 토양의 분포가 확연한 지역에서는 MCARI가 0.9061로 매우 높은 상관계수를 보였다. 전반적으로 MTVI1과 TVI이 0.757의 동일한 상관계수를 가지며 식생에 대한 3개의 endmember를 가장 잘 설명하는 것으로 나타났다.
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
/
pp.647-650
/
2006
Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery was acquired over the Little Miami River Watershed (1756 square miles) in Ohio, U.S.A., which is one of the largest hyperspectral image acquisition. For the development of a 4m-resolution land cover dataset, a hierarchical approach was employed using two different classification algorithms: 'Image Object Segmentation' for level-1 and 'Spectral Angle Mapper' for level-2. This classification scheme was developed to overcome the spectral inseparability of urban and rural features and to deal with radiometric distortions due to cross-track illumination. The land cover class members were lentic, lotic, forest, corn, soybean, wheat, dry herbaceous, grass, urban barren, rural barren, urban/built, and unclassified. The final phase of processing was completed after an extensive Quality Assurance and Quality Control (QA/QC) phase. With respect to the eleven land cover class members, the overall accuracy with a total of 902 reference points was 83.9% at 4m resolution. The dataset is available for public research, and applications of this product will represent an improvement over more commonly utilized data of coarser spatial resolution such as National Land Cover Data (NLCD).
최근 농작물의 상황을 실시간이면서도 비파괴적으로 측정하는 시스템이 스마트팜 등의 분야에서 필수적인 요소로 주목받고 있다. 본 연구에서는 초분광 영상 기술을 통해 많은 개체 수의 청경채 유묘 내의 안토시아닌 함량을 비파괴적으로 동시에 측정하였다. 많은 유묘의 동시 측정을 위해서, 기존의 초분광 영상 시스템의 실험 구성을 수정하였다. 품종당 24개씩 총 96개의 유묘를 측정하였고, 한번의 초분광 데이터 획득시 12개의 유묘가 동시에 분석 가능했으며, 총 3분이 소요된다. 본 논문에서 제안한 초분광 영상 기술은 파괴적 화학 분석 방법과 비교 가능한 분석 시스템을 제공하는 것으로 나타났다. 또한 많은 수의 식물을 동시에 측정함으로써, 초분광 영상 기술이 초고속 피노타이핑 시스템에 적용될 수 있다는 가능성을 확인하였다.
하이퍼스펙트럴 영상자료는 객체에 대한 많은 정보를 함유하고 있어 객체의 보다 정확한 분류가 가능하다. 본 논문에서는 하이퍼스펙트럴 영상분류를 위하여 SMI(Spectral Mutual Information)이라는 새로운 스펙트럼 유사도 측정기법을 제안하였다. 본 방법은 정보이론 분야에서 대두된 상호정보량의 개념을 차용하여 고안되었으며 스펙트럼간의 통계적 의존성을 측정할 수 있다. SMI는 영상의 각 화소스펙트럼을 확률변수로 간주하고 두 스펙트럼간의 유사 상호정보량을 통하여 유사도를 측정함으로써 영상을 분류한다. 제안된 기법의 효율성을 평가하기 위해 기존에 개발된 SAM, SSV 분류기법을 이용하여 동일지역에 대해 분류를 수행하고 분류 정확도를 비교 평가하였다. 실험결과 제안한 SMI 기법은 하이퍼스펙트럴 영상분류에 유용하게 적용될 수 있으리라 판단된다.
Eung Jun Lee;Lyu Jin Jun;Young Juhn Lee;Yeong Eun Oh;Sung Hyun Kim;Heung-soe Kim;Ye Ji Kim;Joon Bum Jeong
한국어병학회지
/
제37권1호
/
pp.89-96
/
2024
Kudoa septempunctata, a myxozoan parasite, usually presents without any signs and primarily infects adult fish. The invasive diagnostic methods, such as tissue biopsy, can identify pathogens, but cause economic losses because they require killing the fish. In this study, we conducted a monitoring of four fish farms located on Jeju Island, to investigate the potential for non-invasive diagnosis of K. septempunctata using hyperspectral cameras. It provides spectral information from R000_B000_G000 to R255_B255_G255 for a total of 3,282 olive flounder (Paralichthys olivaceus). Each object is imaged with 2,000 data points, allowing comprehensive spectral analysis by comparing images obtained from negative control objects to positive control objects. Noticeable differences were observed in the brightness or pallor of the positive control images. This suggests the potential utility of hyperspectral imaging as a non-invasive diagnostic tool for detecting K. septempunctata infections in fish populations.
Kim, Dae-Sung;Cho, Young-Wook;Han, Dong-Yeob;Kim, Young-Il
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
/
pp.732-734
/
2003
In the middle -resolution remote sensing, the Ground Sampled Distance(GSD) sensed and sampled by the detector is generally larger than the size of objects(or materials) of interest, in which case several objects are embedded in a single pixel and cannot be detected spatially. This study is intended to solve this problem of a hyperspectral data with high spectral resolution. We examined the detection algorithm, Linear Spectral Mixing Model, and also made a test on the Hyperion data. To find class Endmembers, we applied two methods, Spectral Library and Geometric Model, and compared them with each other.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.