• Title/Summary/Keyword: Hypersonic Propulsion

Search Result 94, Processing Time 0.03 seconds

Combustion Characteristics of Hypersonic SCRamjet Engine (극초음속 스크램제트 엔진의 연소특성)

  • 원수희;정은주;정인석;최정열
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of model SCRamjet engine combustor, where a hydrogen jet injected into a supersonic cross flow and in a cavity Combustion phenomena in a model SCRamjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, was observed around separation region of upstream of the normal injector and inside of cavity. The results show that the separation region and cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs in the separation-freestream and cavity-freestream interface.

Internal Flow Aerodynamic Test of a Mach 5 Scramjet Engine (마하 5 스크램젯 엔진의 내부 유동 공력 시험)

  • Yang, In-Young;Lee, Yang-Ji;Kim, Young-Moon;Lee, Kyung-Jae;Kang, Sang-Hoon;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.584-587
    • /
    • 2011
  • An internal flow aerodynamic test was performed for a Mach 5 scramjet engine. The test was done without fuel injection, as a preliminary test for the combustion test. Test engine is an engineering model with intake cross-section of $70mm{\times}200mm$ and total length of 1.7m. Test facility is a blowdown-type, high enthalpy, hypersonic facility. 19 pressures were measured through the holes on the model surface along the engine internal flow passage. It was found that the facility start is possible, and also supersonic flow is maintained inside the engine.

  • PDF

A Technical Review of Endothermic Fuel Use on Supersonic Flight (고속비행체에서 흡열연료의 이용기술 동향)

  • Kim, Joong-Yeon;Park, Sun-Hee;Chun, Byung-Hee;Kim, Sung-Hyun;Jeong, Byung-Hun;Han, Jeong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.93-96
    • /
    • 2009
  • Advances in high speed flight technologies and engine efficiencies increase heat load on the aircraft. As the temperature of air flow is too high to cool the structure at hypersonic flight speeds, it is necessary to utilize the aircraft fuel as the primary coolant. By undergoing endothermic reaction, such as thermal decomposition or catalytic decomposition, aircraft fuels have heat sink potential. These fuels are called endothermic fuels. The endothermic reaction can be improved by catalysts, but limited by coke deposition. In this study the essential technologies of endothermic fuels are described, and intended to be used for basic research.

  • PDF

Performance Design of a Dual Mode Ramjet Engine (초음속에서 극초음속까지 비행을 위한 이중모드 램제트엔진의 성능 설계)

  • Choe, Se-Young;Yeom, Hyo-Won;Kim, Sun-Kyoung;Sung, Hong-Gye;Byun, Jong-Ryul;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.289-292
    • /
    • 2007
  • Performance of a dual mode ramjet engine based on the sensitivity analysis of design parameters (the gap between cowl and inlet spike and combustor length) was analyzed from the view points of aerodynamics and thermodynamics. A dual mode engine performing from supersonic to hypersonic (Mach no. 2 to 6) was designed in a proposed flight envelop. The design method and result were comparable to the results of the previous study, Hyperion RLV, and the CFD calculation.

  • PDF

A New Convergence Acceleration Technique for Scramjet Flowfields

  • Bernard Parent;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.15-25
    • /
    • 2004
  • This paper outlines a new convergence acceleration de-signed to solve scramjet flowfields with zones of re-circulation. Named the “marching-window”, the algorithm consists of performing pseudo-time iterations on a minimal width subdomain composed of a sequence of cross-stream planes of nodes. The upstream boundary of the subdomain is positioned such that all nodes upstream exhibit a residual smaller than the user-specified convergence threshold. The advancement of the downstream boundary follows the advancement of the upstream boundary, except in zones of significant streamwise ellipticity where a streamwise ellipticity sensor ensures its continuous progress. Compared to the standard pseudo-time marching approach, the march-ing-window is here seen to decrease the work required for convergence by up to 24 times for supersonic flows with little streamwise ellipticity and by up to 8 times for supersonic flows with large streamwise separated regions. The memory requirements are observed to be reduced sixfold by not allocating memory to the nodes not included in the computational subdomain. The marching-window satisfies the same convergence criterion as the standard pseudo-time stepping methods, hence resulting in the same converged solution within the tolerance of the user-specified convergence threshold. The extension of the marching-window to the weakly-ionized Navier-Stokes equations is also discussed.

  • PDF

Numerical Simulation Study on Combustion Characteristics of Hypersonic Model SCRamjet Combustor

  • Won, Su-Hee;Eunju Jeong;Jeung, In-Seuck;Park, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.42-47
    • /
    • 2004
  • Air-fuel mixing and flame-holding are two important factors that have to be considered in the design of an injection system. Different injection strategies have been proposed with particular concern for rapid air-fuel mixing and flame-holding. Two representative injection techniques can be applied in a supersonic combustor. One of the simplest approaches is a transverse(normal) injection. The cavity flame holder, an integrated fuel injection/flame-holding approach, has been proposed as a new concept for flame holding and air-fuel mixing in a supersonic combustor. This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of a model scramjet engine combustor, where hydrogen is injected into a supersonic cross flow and a cavity. The combustion phenomena in a model scramjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, were observed around the separation region of the transverse injector upstream and the inside cavity. The results show that this flow separation generates recirculation regions which increase air-fuel mixing. Self-ignition occurs in the separation-freestream and cavity-fteestream interfaces.

  • PDF

Intake Flow Characteristics of HyShot Scramjet Engine (HyShot 스크램제트 엔진의 흡입구 유동특성 연구)

  • Won Su-Hee;Choi Jeong-Yeol;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.47-52
    • /
    • 2004
  • In the design of scramjet intake for hypersonic flight, a variety of aerothermodynamics phenomena are encountered. These phenomena include blunt leading - edge effects, boundary layer development issues, transition, inviscid / viscous coupling, shock - shock interactions, shock / boundary - layer interactions, and flow profile effects. For intakes that are designed to operate within a narrow Mach number / altitude envelope, an understanding of a few of these phenomena might be required. In this work several predominant flowfield phenomena (viscous phenomena, boundary - layer separation, and combustor entrance profile) are discussed to investigate the performance of the intake at the altitude and angle of attack extremes of the HyShot flight experiment.

  • PDF

Variable Inlet Design for Hypersonic Engines with a Wide Range of Flight Mach Numbers (광대역 마하수 비행을 위한 극초음속 엔진 흡입구의 가변형상 설계)

  • Kang, Sang Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.65-72
    • /
    • 2015
  • In present study, a supersonic inlet for dual mode ramjets or RBCC/TBCC engines with a wide range of flight Mach numbers is designed. A conical variable inlet configuration is chosen for the inlet design. Geometric relations with angles of compression cones and conical shock waves are used for the design of the inlet configuration. The performance of the supersonic inlet is confirmed by the numerical analysis. The capture area ratio is maintained around 100% from Mach 3 to 8 conditions.

Measurement of Laminar Burning Velocity of Endothermic Fuel Surrogates (흡열분해 모사연료의 층류화염 전파속도 측정)

  • Jin, Yu-In;Lee, Hyung Ju;Han, Jeongsik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.67-75
    • /
    • 2019
  • The laminar burning velocity of endothermic fuel surrogates is measured in this study, in order to investigate combustion characteristics of aviation fuel after being used as coolant in an active cooling system of a hypersonic flight vehicle. A Bunsen burner was manufactured such that the laminar burning velocity can be taken for two types of surrogate fuels, SF-1 and 2. The results showed that the burning velocity of surrogate fuels was faster at high equivalence ratio conditions than that of the reference fuel (RF), and specifically, the velocity of SF-1 had the maximum value at the highest equivalence ratio compared with those of SF-2 and RF.

Numerical Study of Shock Wave-Boundary Layer Interaction in a Curved Flow Path (굽어진 유로 내부의 충격파-경계층 상호작용 수치연구)

  • Kim, Jae-Eun;Jeong, Seung-Min;Choi, Jeong-Yeol;Hwang, Yoojun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.36-44
    • /
    • 2021
  • Numerical analysis was performed on the shock wave-boundary layer interaction generated in the internal flow path of the curved interstage of the scramjet engine flight test vehicle. For numerical analysis, the turbulence model k-ω SST was used in the compressibility Raynolds Averaged Navier Stokes(RANS) equation. Representatively, the separation bubbles on the upper wall of the nozzle, the interaction between the concave shock wave and the boundary layer, and the shock wave-shock wave interaction at the edge were captured. The analysis result visualizes the shock wave-boundary layer interaction of the curved internal flow path to enhance understanding and suggest design considerations.