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Abstract

This paper outlines a new convergence acceleration de-
signed to solve scramjet flowfields with zones of re-
circulation. Named the “marching-window”, the algo-
rithm consists of performing pseudo-time iterations on
a minimal width subdomain composed of a sequence
of cross-stream planes of nodes. The upstream bound-
ary of the subdomain is positioned such that all nodes
upstream exhibit a residual smaller than the user-speci-
fied convergence threshold. The advancement of the
downstream boundary follows the advancement of the
upstream boundary, except in zones of significant stre-
amwise ellipticity where a streamwise ellipticity sen-
sor ensures its continuous progress. Compared to the
standard pseudo-time marching approach, the march-
ing-window is here seen to decrease the work required
for convergence by up to 24 times for supersonic flows
with little streamwise ellipticity and by up to 8 times
for supersonic flows with large streamwise separated
regions. The memory requirements are observed to
be reduced sixfold by not allocating memory to the
nodes not included in the computational subdomain.
The marching-window satisfies the same convergence
criterion as the standard pseudo-time stepping meth-
ods, hence resulting in the same converged solution
within the tolerance of the user-specified convergence
threshold. The extension of the marching-window to
the weakly-ionized Navier-Stokes equations is also dis-
cussed.

Introduction

There is little doubt that the most efficient way to solve
supersonic or hypersonic flow with no streamwise el-
lipticity is through a space-marching method, as nu-
merous extremely efficient marching methods devel-
oped over the years can attest (see for example Refs. 1-
5). The Navier-Stokes equations at supersonic speeds
do, however, exhibit some ellipticity in the marching
direction through the streamwise viscous terms and the
subsonic layer of the boundary layer, and it is nec-
essary for a space-marching method to ignore these
mechanisms by solving a reduced set of the original
equations of motion, such as the parabolized Navier-
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Stokes equations (PNS). The PNS are defined here as
the equation set obtained from the Navier-Stokes equa-
tions by neglecting all viscous terms in the streamwise
direction and by modifying the streamwise momen-
tum equation to prevent any pressure disturbance to
travel upstream, using characteristics splitting or pres-
sure splitting as suggested by Vigneron et al.' The ap-
plicability of the space-marching methods is limited to
flows with negligible streamwise ellipticity, hence pre-
venting their deployment to many practical flowfields.

The need to tackle streamwise ellipticity prompted
the development of the “global iteration” space-march-
ing methods in which a sweep is performed several
times on the entire computational domain to permit the
upstream propagation of information (see Ref. 6 for a
detailed review). Such are characterized, compared
to the pseudo-time marching schemes, by a smaller
memory requirement due to the storage of temporary
variables in one marching plane only and by enhanced
wave propagation mechanism in the streamwise direc-
tion. The reduced Navier-Stokes (RNS) equations, de-
rived from the Navier-Stokes equations by ignoring all
streamwise diffusion terms but not altering the mo-
mentum convection terms, are usually solved in this
manner leading to fast convergence of subsonic / su-
personic streamwise unseparated flows” and even of
viscous/inviscid interactions creating streamwise sepa-
ration.'®!! In a similar vein, Bardina'? shows that sig-
nificant reduction in work is achievable by the use of
global marching sweeps to solve the full Navier-Stokes
equations for high-speed flows. However, if not limited
to some predetermined zones of the computational do-
main, the global iteration approach loses some perfor-
mance when solving large reverse flow regions, as the
number of sweeps can become excessive due to its de-
pendence on the size of the separation bubble. Further.
some computing might be inefficiently allocated to the
nodes downstream of the separation bubble, prior to its
convergence. These deficiencies can be remedied by
using a space-marching scheme solving the PNS equa-
tions until an elliptic/reverse flow region is encoun-
tered, then switching to a global iteration RNS method
for the length of the elliptic region, iterating until con-
vergence is reached, and pursuing with the marching
PNS scheme (see Miller er al.® for instance). How-
ever, such a strategy forces the solution of the PNS
equations in certain regions of the flowfield for which
thc PNS assumption might inducc apprcciable crrors.
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The accuracy of the final solution is hence strongly de-
pendent on the ability of the mcthod at predicting cor-
rectly which regions of thc flowficld can bc accuratcly
predicted with the PNS equations, and which regions
require the use of the RNS equations.

Recently, a novel approach at solving inviscid su-
personic flow with embedded subsonic regions has been
proposed.'? The method, named “active-domain”, con-
sists of performing pseudo-time iterations on a small
band-like computational domain that advances in the
streamwise direction every time the residual of the act-
ive-domain near the upstream boundary falls below a
user-defined threshold. Using sensors based on the
streamwise component of the Mach number, the active-
domain boundaries automatically surround any locally
subsonic region, on which sufficient iterations are per-
formed to reach steady-state. When the residual inside
the subsonic region decreases below the user-defined

threshold, the active-domain advances past the subsonic-

region further downstream. By marching in the stream-
wise direction, the active-domain results in a decrease
in work of up to 10 times compared to standard pseudo-
time marching methods for several inviscid problems.
However, the ability of the active-domain at solving
accurately a streamwise elliptic region is limited by
the accuracy of the sensor responsible for the upstream
movement of the upstream boundary of the active-dom-
ain. Extension of the active-domain method to vis-
cous flow is hampered by the difficulty of formulating
a streamwise ellipticity sensor that captures all signifi-
cant upstream propagating waves while restricting the
size of the active-domain to a minimum. Success has
been reported in solving viscous flow without strcam-
wise separation by maintaining the active-domain width
equal to the height of the boundary layer.”* However,
to the authors’ knowledge, the active-domain method

has not yet been extended to streamwise separated flows.

This paper proposes an alternate form of the active-
domain method, named the “marching-window" algo-
rithm, that is applicable to streamwise separated flows.
Similarly to the active-domain, the marching-window
performs localized pseudo-time stepping on a subdo-
main composed of a sequence of cross-stream planes
of nodes. The width of the marching-window decreases
to only a few planes in regions of quasi-hyperbolic flow
and increases to the size of the streamwise-elliptic re-
gion when encountered. However, in contrast to the
active-domain algorithm, the marching-window is stric-
tly a convergence acceleration technique as it guaran-
tees the residual of all nodes to be below the user-
defined threshold when convergence is attained, and
hence does not modify the final solution as obtained
with the standard pseudo-time stepping schemes. This
is accomplished by keeping the residual upstream of
the marching window subdomain updated at all times,
and by positioning the upstream boundary such that the
residual of all nodes upstream is below the user-defined
threshold. This results in an algorithm that captures all

upstream propagating waves affecting the residual sig-
nificantly. The upstrcam propagating wavcs can orig-
inatc from (but arc not nccessarily limited to) large
subsonic pockets, strcamwisc separation, streamwisc
viscous fluxes, or the flux limiters in the streamwisc
convection flux derivative, for instance. Further, to cn-
hance the performance of the algorithm, a sensor based
on the Vigneron splitting’ is developed to advance the
downstream boundary when significant streamwise el-
lipticity is detected.

Several numerical experiments are presented includ-
ing the inviscid solution of a supersonic inlet with a
blunt leading edge and a turbulent flowfield includ-
ing shock boundary layer interactions with consider-
able streamwise flow separation solved with the Favre-
averaged Navier-Stokes (FANS) equatxons closed by
the k@ turbulence model of Wilcox.'S A comparison
between the marching-window cycle and the standard
pseudo-time marching cycle is made on the basis of
CPU time, effective iterations, and storage.

Governing Equations

The Favre-averaged Navier Stokes equations closed by
the k@ turbulence model of Wilcox'* are here expressed
in generahzed coordinates in strong conservation form'*"’
as dQ/d 1 = —R with the residual

F, & 9 aG\
L[5 -L 7 ()

of which a minimization is sought. In the lauter, X;
stands for the curvilinear coordinate in the ith dimen-
sion, while 7 refers to pseudotime. Due to the non-
linearity of the equations, the fictitious ungteady term
dQ/a1 is necessary to obtain the right physical root
by marching in pseudotime. The conservative vari-
able vector Q, convective flux vector F;, diffusion ma-
trix K;;, and diffusion term G are the same as those
outlined in Ref. 18. The total energy E and effective
pressure P* include molecular and turbulent proper-
ties, E=e+k+ %qz and P =P+ %pk,f with e be-
ing the internal energy, g the flow speed ¢orrespond-

ing to ¢ = (L& v,.z)'/ 2. v, the velocity component in
the Cartesian x; direction, P the static pressure, and k
the turbulence kinetic energy. The pressurg P is found
through the ideal gas law from the temperature and the
density. The source terms include the baseline source
terms of the Wilcox 1988 k@ model'” as well as some
additional source terms needed to account for turbu-

lence comprcssnblllty effects.’

-85, ()

Discretization and Pseudotime Integration

The fluid flow equations are discretized using second
order accurate finite-difference central stencils except
for the convection derivative, which is discretized us-
ing the Yec-Roe?*2! flux-limited method. The entropy
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Fig. 1: Example of computational domain and subdomain
notation in two dimensions; the computational domain limits
are denoted by the superscripts E and S.

correction term recommended in Ref, 20 is used for
some of the test cases shown herein. For more de-
tails on the eigenstructure of the fluid flow equations,
details regarding the discretization stencils, the defi-
nition of 5(\,-, and the block-implicit approximate fac-
torization algorithm used to advance the solution in
pseudo-time, the reader is invited to consult Ref. 18.
The local pseudotime step is defined such that its value
lies in-between the value indicated by the minimum
and the maximum CFL conditions:

o -0
d 1 d 1
Atr=CFLmax | «——o | min}{ —— )
=U\Wi+aX,) =\ [Vi+aX,

2
where a ¢ varying between 0 and 1 induces a timc step
of a magnitude situated respectively between a mini-
mum and a maximum CFL based time step. Unless
otherwise indicated, o is set to 0.5. Convergence is
attained when
& < &yerpe V inner nodes, 3)

~

with & a convergence criterion based on the maximum
between the discretized residuals of the continuity and
energy equations:

ns_ RPC pE
‘§Elmax():k"lp Akl, li‘;'). (4)

Domain Decomposition Algorithms

While domain decomposition is generally used for par-
allel computing purposes or used to enable the imple-
mentation of different discretization/integration meth-
ods in different subdomains, it is utilized here as a
means to accelerate the convergence of quasi-hyperbo-
lic systems. We define as quasi-hyperbolic a system
of equations 1) which is elliptic, 2) where some of the
terms, but not all, can be regrouped to form a hyper-
bolic set of equations, and 3) whose solution is very
close to the solution of the hyperbolic set of terms. For
instance, the steady-state Navier-Stokes equations in

the hypersonic regime away from the surfaces would
exhibit a weak influence of the diffusion terms (re-
sponsible for the ellipticity of the system) on the solu-
tion compared to the convection terms (the hyperbolic
sct) and would hence be classificd as quasi-hyperbolic.
Similarly, a quasi-parabolic systcm is dcfined as a sys-
tem of equations 1) which is elliptic, 2) where some of
the terms, but not all, can be regrouped to form a set
of parabolic equations, and 3) whose solution is very
close to the solution of the parabolic set of terms. The
Favre averaged Navier-Stokes equations closed by the
kw model solved at steady-state over a turbulent flat
plate would be termed quasi-parabolic, as the stream-
wise diffusion terms and the upstream component of
the convection terms play a negligible role compared
to the other terms.

The acceleration techniques presented in this paper
are aimed at reducing the work needed to solve quasi-
hyperbolic or quasi-parabolic systems through the use
of domain decomposition. Nonetheless, the effective-
ness of the methods is not limited to entirely quasi-
hyperbolic/parabolic systems and extends to systems
where some regions are quasi-hyperbolic/parabolic and
others strictly elliptic. It is emphasized that domain de-
composition is used here solely as a convergence accel-
eration technique, and does nor modify the discretized
residual, the time stepping schemes, and the conver-
gence criterion.

Identifying the limits of the computational domain
by X} and XF with i € [I,...,d] and the limits of a
subdomain by X} and X7, with i € [1,...,d] the region
spanned by the subdomain is referred to by the nota-
tion || X} ¢ X£||;. as shown in Fig. 1. For a subdo-
main with limits different from the computational do-
main limits in only one dimension the notation || X} <
X: || is employed, where it is implied that the limits
in the dimensions other than the nth do not differ from
those of the computational domain (see Fig. 1). Also.
| X, I is a shortcut that stands for the subdomain || X}
& X7|l,. A property that is used in conjunction with
the domain decomposition algorithms is the number
of nodes of dependence of the discretized residual, 5,.
which is defined as the maximum number of nodes on
which the discretized residual depends on each side of
the center node. For example, the minmod TVD dis-
cretization stencil (which is the longest of all stencils
contained in the residual) would give b, = 2 but should
a first order Roe scheme be employed instead, then b,
would be set to one. Similarly, the number of nodes
of dependence of the boundary nodes, by, is defined as
the maximum number of nodes any boundary node de-
pends on along one direction. For the discretization
stencils under consideration, b, is set 1o 2, since the
properties at the boundary nodes are extrapolated from
al most 2 inner nodes using a blend of zeroth and first
order extrapolation polynomials.

When the nodes comprised in the subdomain || X;
< X; |ly; are updated in pscudo-time, then it follows
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Fig. 2: Schematic of the marching-window cycle with the
upstream and downstream bowndaries in equilibrium sur-
rounding an embedded streamwise elliptic region which is
bounded upstream by the condition & < Eyorge and down-
stream by the condition @ < @uepe: 2 dynamic outflow
boundary condition is forced on all inner nodes in || X [,

from the definition of b, that the boundary nodes sit-
uated inside || X} — b, < X7 + by ||, must be updated.
The residual, which depends on both inner and bound-
ary nodes must then be updated between || X — b, — b,
& XF +by + b|l;. In many cases where there are no
boundary nodes situated in the region || X} — b, & XF +
by llvs» it is sufficient to update the residual in | X7 — b,
& XF + b, |ly;. For all methods presented in this paper,
however, this shortcut is not implemented.

Standard Cycle

The “standard cycle” here implies the usual way of up-
dating the solution in pseudo-time, by first finding the
residual for all nodes and then updating the solution.
The algorithm can be written in the following steps:

1. update the boundary nodes in the domain || X}
& XFlvi»

2. update the residual in the domain || X} < XF ...

3. update Q (by pseudo-time stepping) in the do-
main || X§ & XF |}, and,

4. convergence is attained when & < &.oye in the
domain || X§ & XE|,.

Marching-Window Cycle

An alternate form of the active-domain cycle that per-
mits the solution of viscous streamwise separated flows
and satisfies the convergence criterion of Eq. (3) is here
presented. Named the marching-window, the algorithm
differs from the active-domain on three points, namely
1) a dynamic outflow boundary is forced at the down-
stream boundary of the marching-window (see Fig. 2),
2) the ellipticity sensor responsible for a shift down-
stream of the downstream boundary of the marching-
window is based on a Vigneron splitting of the stream-
wise pressure derivative instead of the streamwise com-
ponent of the Mach number, and 3) the upstream bound-

ary of the marching-window is positioned such that
& < &ierge for all nodes upstream, instead of being a
function of a residual monitor region and a strecamwise
ellipticity sensor based on the streamwise component
of the Mach number. At the first iteration, the up-
stream boundary of thc marching-window is set to the
upstream boundary of the computational domain with
the downstream boundary of the marching-window sep-
arated from the upstream boundary by b, nodes. De-
noting the upstream boundary of the marching-window
by X} and the downstream boundary by X}, the marching-
window cycle can be written as:

1. update @ (by pseudo-time steppingj in the sub-
domain || X7 & X7,

2. update the boundary nodes in the subdomain | X} —

by, & X7,
3. update the residual (hence, &) in the subdomain
X3 = by — be & X7l

4. redefine the marching-window boundaries:

(a) find the maximum value for X; such that
& < &Eyerge for all nodes in the subdomain
X7 & X - 1],

(b) every ¢, iterations, if @ > Q. for any
node in the subdomain || X{ —¢, < X7},
orif X§ > X{ — ¢, then 1) incrément X{ by
one, 2) update the boundary nodes in the
subdomain || X{ — 1 — b, <> X§ ||, and 3) up-
date the residual in the subdomain || Xf —
I—b,— b & Xf— 1}, and,

5. convergence is attained when & < §ve,ge for all
nodcs in the subdomain || X§ < X§ ||, and when
Xe — Xl:

The marching-window cycle is not self-starting and it
must be ensured that the residual is updated for all
nodes part of the computational window before the first
iteration.

The ability of the marching-window at satisfying
the convergence criterion of Eq. (3) lies in Steps 1-
3, where Q is updated in pseudo-time in Step 1 be-

Jore determining the residual in Step 3. Once Q is up-

dated in Step 1 on the subdomain || X] «> XF|;. since
a boundary node depends on at most b, neighbors, it is
sufficient to update the boundary nodes in the subdo-
main || X} — b, <> X} ||; to guarantee that gll boundary
nodes upstream of X§ are up to date alter Step 2. Once
the boundary nodes have been updated in the subdo-
main || X} — b, < X{||,, since the discratized resid-
ual depends on at most b, neighbors, it is sufficient
to update the residual in the subdomain | X} — b, —~
by <+ X |, to guarantee that the residual of all nodes
upstream of X are up to date after Step 3. Since &
is a function of the residual, £ upstream of X} is up
to date, and the upstream boundary of the marching-
window X} can be positioncd correctly in Step 4a by
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ensuring for all nodes upstream of X} that & < & oppe.
This serves two purposes: 1) the convergence crite-
rion of Eq. (3) is satisfied if convergence is attained in
Step 5, and 2) the upstream boundary of the marching-
window moves upstream for any upstream propagating
wave that affects the residual significantly and raises
& above the user-defined convergence threshold Eyerge.
Contrarily to the active-domain, the upstream propa-
gating wave is not limited to locally subsonic flow but
includes all significant streamwise elliptic phenomena,
such as streamwise separated flow, streamwise viscous
derivatives, or flux limiters in the streamwise convec-
tion derivative, for instance.

Step 4b advances the marching-window downstr-
eam boundary when the width of the window is smaller
than a user-specified constant ¢;, or when the stream-
wise ellipticity sensor @ is greater than the user-specifi-
ed constant Qe for any node part of the subdomain
| X§ — ¢, < X{|l,. The streamwise ellipticity sensor ¢
is here defined as:'®

_X 1-M? \|opP*
(p:pamax(O, 1+PpEM|2)I3X1 . 5)

It is important to note that the ellipticity sensor ¢ makes
two important assumptions: 1) the streamwise elliptic-
ity originating from the streamwise viscous derivative
terms and the flux limiter part of the streamwise con-
vection derivative is assumed negligible, and 2) at the
point where ¢ is evaluated, the solution is assumed
to be converged to steady-state. The first assumption
is remedied by introducing a2 minimum width of the
marching-window, ¢,, which is typically given a value
ranging from 9 to 15. The second assumption can lead
to some performance degradation of the marching-win-
dow when the flow near the downstream boundary is
far from convergence. For this reason, the user-adjusta-
ble parameter ¢, is introduced in Step 4a, with the
consequence of evaluating @ every ¢, iterations only.
Therefore, a high value given to ¢, helps in ensuring a
more converged solution near the downstream bound-
ary, and reduces the error in the ellipticity sensor ¢ due
to temporarily non steady-state flow.

In Step 4b, after the downstream boundary of the
marching-window is advanced by one station, the up-
date of the boundary nodes in the subdomain || X} ~
1—b, < X{|, and of the residual in the subdomain
1Xf—1—b, — b, & X{— 1}, is necessary to ensure
that the residual is properly updated in the marching-
window, which is necessary for Step 1 to be performed
correctly at the following iteration.

While the user-definable constanis ¢,, ¢;, and Qyeree
affect the performance of the marching-window cycle
as a convergence acceleration technique, they do nor
affect the accuracy of the solution when convergence
is attained due to the convergence criterion of Eq. (3)
being satisfied.

Marching-Window / Multizone Cycle

The performance of the marching-window algorithm
can be enhanced by introducing multizone decompo-
sition inside the marching-window. Before each iter-
ation, the marching-window subdomain | X & X |,
is decomposed into several zones of length no more
than ¢, nodes in each dimension. Then, Steps 1-3 ol
the marching-window cycle (see Section ) are replaced
by Steps 1-3 of the multizone cycle. Details about the
latter can be found in Ref. 18.

Test Cases

Two stcady statc supcrsonic flowfields are solved us-
ing the different types of cycles mentioned in the last
section, and the performance of each is assessed on the
basis of 1) the number of cffective iterations, 2) CPU
time, and 3) maximum storage required. To enable a
fair comparison between the different cycle strategics.
the number of cffective itcrations is defined as

effective iterations =
number of times an inner node is updated

total number of inner nodes ©)

which is a good measure of the cycle performance as
long as most of the computing effort is spent on the
pseudo-time stepping instead of the residual, due (o
the overlap of the residual determination when a multi-
zone decomposition is used. The implicit scheme used
herein spends three quarters of its computing effort on
the time stepping sidc, therefore reducing the residual
overlap overhead work and justifying the use of Eq. (6)
as a performance paramecter. In spite of being accu-
rately measured, the number of CPU seconds is not
regarded as a more mecaningful performance paramec-
ter duc to the unavoidable bias that might occur in the
programming of the cycles and the high dependence of
the work on the architecturc of the computer. Certain
enhancements to the multizone cycle, such as unifying
adjacent zones, could be implemented which would re-
sult in a non-negligible decrease in work, while the use
of a vector computer (of CRAY type) would advantage
the longer loops present in the standard cycle. There-
fore, bath the number of effective iterations and CPU
time are monitored for the two test cases,

Inviscid Supersonic Inlet with a Blunt Leading
Edge

A first comparison between the different cycles is per-
formed for a steady-state inviscid flow overa I m long
supersonic inlet. Air enters the channel at a Mach num-
ber of 5, a pressure of 4 kPa, and a temperature of
240 K. The grid size is set to 512 x 256 nodes. The
user-defined parameters of interest arc sct to (when ap-
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Table 1: Effective iteration count, work, and storage com-
parison at a CFL number of unity, for the blunt leading edge
inviscid supersonic inlet case using a 512 x 256 node grid.

cycle iter. work  stor.
marching-window / multizone 449 1.0 1.0
marching-window 86.8 1.8 1.0

standard cycle 13910 236 17.6

04

02¢

Xy [m}

" P L ST
0.2 04 06 [X] 1
X [m]

Fig. 3: Pressure contours for the blunt leading edge inviscid
supersonic inlet case obtained using a 512 x 256 grid; the in-
flow conditions correspond to M =5, P=4kPaand T = 240
K; no difference is noticeable between the pressure contours
obtained with the different cycles.

plicable)

0=05, Eurge =100, @ueee =5000 L,
$,=20, ¢,=3, and ¢,=9,

where the value of 0.5 given to ¢ translates into a ge-
ometric average between the minimum CFL condition
based pseudo-time step and the maximum CFL condi-
tion based pseudo-time step. The convergence thresh-
old Eyerge is low enough that a decrease in &yeqze would
not result in any noticeable difference of the pressure
contours in Fig. 3. Itis noted that the use of the entropy
correction by Yee er al.?® with { = 0.2 is here used to
avoid a carbuncle phenomenon near the blunt leading
edge.

Table 1 shows the CPU time and effective itera-
tions needed to reach convergence for the marching-
window, marching-window/multizone, active-domain,
multizone, and standard cycles. The marching-window
cycle decreases the iteration count by allowing a com-
putational window to travel in space following the prop-
agation of the waves. This results in a decrease in ef-
fective iterations, compared to the standard cycle of 16
times. Furthermore, the use of multizone decomposi-
tion inside the marching-window focuses the pseudo-
time stepping effort to the regions requiring more it-
erations to reach convergence, such as the region of
subsonic flow upstream of the inlet blunt leading edge,
hence resulting in only 45 effective iterations to reach
convergence and an overall reduction in cffcctive iter-

Table 2: Effective iteration count, work, and storage compar-
ison for the concatenated channels test case; the mesh size is
of 256 x 128 nodes and the CFL number is varied between
0.1 and 10.

cycle iter. work  stor.
marching-window / multizone 219 1.0 1.0
marching-window 444 1.7 1.0
multizone 1215 59 6.2

standard cycle 2342 8.0 6.2

Table 3: Sensitivity of the effective iteration count and work
to the user-defined constants for the concatenated channels
test case; the marching-window/multizone cycclé is used with
a mesh size of 256 x 128 nodes, and a CFL range 0.1 <
CFL < 10.

$ o ' Duerge work | iter.
20 3 9 5x10° 1.00 1.0

10 3 9 5x10} 1.20 112
40 3 9 s5xi0? 1.00 1.02
20 15 9  sxi0? 1.15 1.12
20 1 9 5x10° 0.96 0.98
20 3 5 5x10° 146 ¢ 141
20 3 18 5x10} 1.19 1.24
20 3 36  sx10° 1.89 1.99
20 3 9  5x10? 1.33 1.40
20 3 9 5x10¢ 1.57 1.54

06 ¥ y T T

X, [m]

0.1 L

Fig. 4: Effective pressure contours of the concagenated chan-
nels case obtained using a 512 x 256 mesh; air enters the first
channel at a Mach number of 5, a pressure of 1000 Paand a
temperature of 450 K.

ations of 31 times compared to the standard cycle.

Shock / Boundary Layer Interaction

The abiljty of the marching-window algorithm to solve
shock / boundary layer interactions at hypersonic flow
conditions is now tested. The geometry involves the
concatenation of a 1.0 x 0.5 m channel to a 0.69 x
0.38 m channel through a 37° compression ramp. Air
enters the first channel at uniform conditions of M =
5, P = 1000 Pa, and T = 450 K. Fixed temperature
(T,.n = 450 K) wall boundary conditions are applied
on bottom and top boundarics, with a grid clustcred at
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Fig. 5. Location of the marching-window upstream and
downstream boundaries for the concatenated channels case
using the marching-window/multizone cycle, with a variable
CFL number, ie 0.1 < CFL < 10; notice the high amount
of work spent on the recirculation zones in the vicinity of
X; ~ 128 and X| ~ 218, while very few steps are needed to
converge the quasi-hyperbolic/parabolic regions.

both walls. As for the backward facing step case, a ge-
ometric averaged local time step is utilized to enhance
wave propagation through high aspect ratio cells, while
the other user-adjustable parameters are set to

gvergezlooéa ‘Pvage=5000%y
0,=20, ¢,=3, and ¢,=9.

From the effective pressure contours of Fig. 4, two
recirculation regions are visible: one at the start of
the shock formed by the 37° wedge, and one at the
point where the shock impinges on the top wall bound-
ary layer. Both recirculation zones are of appreciable
size due to the very low Reynolds number of the flow
which helps generate thick incoming boundary layers.
The major obstacle in converging this flowfield effi-
ciently comes from the high difference in time scales
between the convection dominated flow in the mid-
dle of the channels and the viscous dominated recir-
culation zones. Time accurate simulations of a simi-
lar problem indicate that the amount of time required
for the separated flow regions to reach steady state is
typically one order of magnitude more than the time
needed for the shock structure to establish itself. Con-
sequently, one would prefer high pseudo-time steps to
be used in the recirculation zones for fast convergence,
but unfortunately the step size is limited by nonlin-
ear stability restrictions which are of importance espe-
cially near the non-converged shock waves. For these
reasons, it is not surprising that as many as 2342 iter-
ations are needed for the standard cycle to reach con-
vergence, as Table 2 attests. Similarly to the backward
facing step, the CFL number is linked to &, such that
at &max = 10*, the CFL number is 10 and at &, = 105,
the CFL numberis 0.1.

The marching-window / multizone cycle performs
particularly well as thc work is focused on the reversc
flow regions, while the rest of the domain is quasi-
hyperbolic/parabolic and nceds only a small amount
of work to reach convergence (see Fig. 5). The use of
the marching-window coupled with a multizone strat-
egy makes possible a decrease in effective iterations
of 8 times compared to the standard cycle as shown in
Table 2.

As in the previous test case, a convergence crite-
rion of §,,c,gc =100 { is found necessary to obtain rea-
sonable accuracy, and no discernible difference is ob-
served between the contours of properties obtained with
the different cycles. Even if both the marching-window
and the standard cycle guarantee the convergence cri-
terion of Eq. (3) to be satisfied once convergence is
attained, the governing cquations have multiple roots
due to their non-linearity, and a different flow solution
could be obtained by the different cycle strategies. For
all test cases presented here, however, it is verified that
the same root is obtained independently of the acceler-
ation technique.

The sensitivity of the user-adjustable parameters
for the marching-window cycle is assessed for this test
case in Table 3. It is seen that the performance of
the marching-window is not affected considerably by
a change of the average zone length ¢, or by a change
in ¢,, the latter being the number of iterations before a
reading of the streamwisc cllipticity sensor & is taken.
For ¢, varicd from 10 to 40, thc number of cffective
itcrations is observed to change by only 12%, and for
¢, varicd from 1 to 135, the number of cffective itera-
tions increases by 14%. On the other hand, the param-
eters ¢; and @y arc seen to affect the performance
of the algorithm more significantly. Raising ¢; from
9 to 36 increases twofold the number of effective it-
erations, and increasing @,y tenfold results in an in-
crease of 54% in the cffcctive iterations count. The
high sensitivity of the effective iterations on either ¢,
Or QPuerge is due to the high dependence of the width
of the marching-window on these parameters. When
the marching-window encloses too tightly a zone of
streamwise ellipticity, the solution needs to be con-
verged locally several times, hence increasing the work.
When the marching-window overestimates the size of
a streamwise elliptic region, the high number of itera-
tions needed locally to converge a streamwise-elliptic
region is spent on a larger portion of the computational
domain, hence resulting in decreased performance.

Extension to Weakly-lIonized Flow

In a paper soon to be published,? the marching win-
dow is extended to the reacting weakly-ionized Favre-
averaged Navier-Stokes equations (WIFANS), consist-
ing of the time-averaged Navier-Stokes equations clos-
ed by the k@ turbulence model coupled to the electric
field potential equation. The addition of the electric
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Fig. 6: Problem setup for the second test case. All dimen-
sions in cm.

field potential equation prohibits the straightforward
deployment of the marching window due to the system
of equations not exhibiting some quasihyperbolicity in
the streamwise direction. Despite the lack of quasihy-
perbolicity of the WIFANS equations, it is observed
that a significant reduction in work can be achieved
while solving supersonic viscous flows if (i) the use
of the marching window is limited to all equations ex-
cept the electric field potential equation, and (ii) the
sensors at the upstream and downstream boundaries of
the marching window are modified to include the in-
fluence of the electric field potential on the residual
of the fluid flow equations. Upon completion of one
streamwise sweep, the so-modified marching window
cycle satisfies the same convergence criterion as the
standard pseudotime stepping cycle, hence resulting in
the same converged solution within the tolerance of a
user-specified convergence threshold.

Fuel Injection Through a Backward-Facing Step

To assess the performance of the algorithm upon solv-
ing the weakly-ionized FANS equations, a reacting hy-
drogen/air parallel mixing problem is chosen as a test-
case. The hydrogen is injected through a backward-
facing step as depicted in Fig. 6. The Jachimoswky
chemical solver is used with 9 species solved, namely
H,, 0,, H, O, OH, H,0, HO,, H,0,, N,. The air
inflow conditions are such that the nitrogen and oxy-
gen mass fractions correspond to 0.765 and 0.235 re-
spectively, the Mach number is 4, the static pressure
is 4 kPa, and the wemperature is 700 K. The fuel in-
flow Mach number is set to 2.6, the pressure to 4 kPa,
and the temperature to 700 K. On the vertical side of
the backward-facing step separating the hydrogen from
the air at the point of injection, the electric field poten-
tial ¥ on the side wall is set to 0 while being set to
55 V on the 4-cm wide electrode located on the bot-
tom wall 10 cm downstream of the start of the mixing
region, At all other boundary nodes, insulated con-
ditions are in effect. A magnet of strength B, = 20
Teslas is located in the channel near the bottom wall,
and positioned such that A=(0, ~0.17m, 0) and
B = (0, —0.17m, 0.05m) with the definition of By, A,

and B outlined in Ref. 22. It is noted that this arrange-
ment results in the magnitude of the magnetic ficld not
exceeding 2.5 Teslas throughout the computational do-
main. At all wall boundaries, the temperature is ¢x-
trapolated such that the temperature gradient normal to
the wall vanishes.

The mesh is constructed of 148 gridlines in the
cross-stream direction and of either 338 gridlines along
the streamwise direction when L = 56 cm or of 974
gridlines along the streamwise direction when L = 456
cm. The mesh spacing at the top and bottbm bound-
aries is set to 3 x 107>m and exponentially becomes
greater near the center of the channel. The gridlines in
the streamwise direction are clustered at the interface
between the electrodes and the insulated walls, with a
spacing equal to 3 x 10" m. The electrical conductiv-
ity is set to 30 mho/m, while the Hall parameter for
the electrons is set to 0.1. The user-defined constants
related to the marching window are set to

¢2 =6,
and é\crgc

6 =18, Quoge =T x10* L,
10”{ l

¢| = 209

In addition to the latter, two parameters need to be
specified when solving weakly-ionized flow.? More
specifically,

0,=3 and Eyvege =5 X 10-"-;[7‘.

A value of 0.2 is assigned to o for both the marching
window and the standard cycles. Nonlinear stability
restrictions prevent the use of a CFL number higher
than 5.0 for either the marching window or the stan-
dard cycle for most of the convergence history. Fur-
thermore, a CFL number higher than 1.0 was observed
to induce oscillations in the fluid flow convergence pa-
rameter &, hence preventing convergence. . Therefore,
we here compare the standard cycle to the marching
window cycle at a CFL number of 1.0 and a Von Neu-
mann number alternated between 70, 490, and 3430.
with the latter being used to solve in pseudo-time the
electric field potential equation.

The impact of the electromagnetic eifects on the
fluid flow properties is shown in Fig. 7 through a com-
parison of the y-velocity contours with an additional
case obtained with the same geometry and inflow con-
ditions, but without the presence of a patential dif-
ference at the electrodes and without an externally-
applied magnetic field. It can be seen that the Lorentz
force affects significantly the velocity near the elec-
trode at the bottom wall situated between x = 10 cm
and x = 14 c¢m, while having a less pronounced influ-
ence further downstream. A study of the convergence
history reveals that the electromagnelic source terms
entail a zone of streamwise ellipticity located between
0 < x € 45 cm. This is significantly greater than the
zone of streamwise ellipticity associated with the recir-
culation region located downstream of the step, which
spans the range 0 < x < 8 cm. Due to the zone of
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Fig. 7: Effect of the presence of the electric/magnetic fields
on the y-velocity contours in m/s for the second test case con-
sisting of fuel injection through a backward facing step.

Table 4: Work (in normalized CPU seconds) for the weakly-
ionized testcase consisting of fuel injection through a back-
ward facing step with L = 56 cm and a grid size of 338 x 148
nodes.

cycle Py verger & work

marching window / multizone 1%103 1.02
marching window / multizone 1x10% 1.00
marching window / multizone Ix 108 1.01
marching window / multizone 1x10° 1.31
standard - 6.04

streamwise ellipticity induced electromagnetically be-
ing larger than the one induced by flow recirculation,
this test case permits the adequate assessment of the
performance of the streamwise ellipticity sensors re-
lated to electromagnetic effects.

The effect of the electromagnctic strcamwisc cllip-
ticity sensor @y, verge (as defined in Ref. 22) on the per-
formance of the marching window is assessed in Table
4 for a distance between the electrode on the bottom
wall and the domain exit, L, fixed to 56 cm. Inter-
estingly, varying @y, verge between 10° 1/s and 10° 1/s
does not affect greatly the work which vary by no more
than 31%. The use of the marching window is seen to
decrease the work required for convergence by more
than 6 times.

The results shown in Table 4 are obtained by set-
ting L to 56 cm, so that the streamwise elliptic re-
gion ends just upstream of the domain exit. While
this is useful to assess the performance of the marching
window for a flowfield where a large part of the com-
putational domain has some streamwise ellipticity, it
does not permit to assess adequately the loss in perfor-
mance related to an overestimation of the length of the

Table 5: Work (in normalized CPU scconds) for the second
testcase consisting of fuel injection through a backward fac-
ing step with L = 456 cm and a grid size of 974 x 148 nodes.

cycle Py verges { work

marching window / multizone 3x 107 1.01
marching window / multizone 3x 104 1.00
marching window / multizone 3% 10° 1.35
standard - 24.06

streamwise ellipticity region by giving a too-low value
0 @y, verge- For this reason, the computational domain
is here extended by 4 meters in the streamwise direc-
tion, with the domain exit situated well downstream of
the streamwise ellipticity region. The effect of @y, veree
is assessed in Table 5 for L = 456 cm. What is partic-
ularly surprising is the small effect of @y, verge ON the
work when being decreased tenfold from 3 x 10* 1/s
to 3 x 10 1/s. A study of the convergence history re-
veals that the tenfold reduction in @y yeree results in
an over-prediction of thc streamwise ellipticity region
of 120 gridlines or approximately 37 cm. Compared
to the size of the domain, this is a rather small over-
prediction, which cxplains partly the small addition in
work. Using a @y, verge Valuc of 3 x 10* 1/s, a twenty-
fourfold decrease in the work is obtained through the
use of the marching window compared to the standard
cycle.

Conclusions

A novel acceleration technique is presented which is
aimed at accelerating the convergence of the Favre-
averaged Navier-Stokes equations in the supersonic re-
gime for flowfields with large streamwise separated flow
regions. Similarly to the active-domain method,'? the
marching-window iterates in pseudo-time a band-like
computational domain of minimal width which adjusts
to the size of the streamwise elliptic regions when en-
countered. However, contrarily to the active-domain
method, it is shown that the marching-window guar-
antees the residual on all nodes to be below a user-
defined threshold when convergence is reached, and
hence results in the same converged solution (within
the tolerance of the convergence critcrion) as the onc
obtaincd by standard pscudo-time marching methods.
A multizone decomposition is implemented inside the
marching-window to restrict the computing to the zo-
nes where the residual is above the user-defined con-
vergence threshold. This is shown to further decrease
the work needed for convergence by close to 2 times
for the problems shown hercin.

The use of the marching-window with multizone
decomposition on a shock boundary layer interaction
flowfield (where two large streamwise separated re-
gions are present) reveals a six-fold decrease in stor-
age and a eight-fold decrcase in work compared to the
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standard cycle. When extended to the weakly-ionized
FANS equations, the algorithm performs equally well
for a problem involving fuel injection through a back-
ward-facing step where the fluid properties are subject
to considerable electromagnetic effects. In the latter
case, the use of the marching window results in up to
a twenty-four-fold decrease in work compared to the
standard cycle.

The proposed algorithm is also shown to work well
at a low CFL number in regions of quasi-hyperbolicity
and is recommended for stiff problems with high non-
linear stability restrictions on the time step size. The
reduction in computational work through the use of
the marching-window is made possiblc by focusing the
high number of iterations nceded to converge the str-
eamwise separated regions to thc region in question.
The amount of storage needed is also significantly re-
duced if no memory is allocated to the nodes outside
of the marching-window subdomain.

The performance of the algorithm is seen not to
be too sensitive to the user-defined ellipticity threshold
constants and the window minimal width. However, it
is unclear at this stage by how much these parameters
would need to be altered for very different flow prop-
erties and physical domain size.
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