• Title/Summary/Keyword: Hypersonic Propulsion

Search Result 94, Processing Time 0.022 seconds

A Technical Review of Endothermic Fuel Use on High Speed Flight Cooling (흡열연료를 이용한 고속비행체 냉각기술 동향)

  • Kim, Joong-Yeon;Park, Sun-Hee;Chun, Byung-Hee;Kim, Sung-Hyun;Jeong, Byung-Hun;Han, Jeong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • As hypersonic flight speeds and engines efficiencies increase, heat loads on an aircraft and it's engine increase. Because the temperature of the air flow is too high to cool the aircraft structure at hypersonic flight speeds, it is essential to use the aircraft fuel as the primary coolant. Endothermic fuels are liquid hydrocarbon aircraft fuels which are able to absorb the heat loads by undergoing endothermic reactions, such as thermal and catalytic cracking. The endothermic reactions are improved by catalysts which change the extent of reaction and product distribution. At high temperature, liquid hydrocarbons would lead to coke formation that can reduce the effectiveness of heat exchanger and cause rapid degradation of the catalyst, thus endothermic capacity of endothermic fuels is limited to the temperature at which coke doesn't form. In this study, the essential cooling technologies by applying endothermic fuels and the properties of the endothermic fuels are described.

Approximate Analysis Model and Detailed Unsteady Structure of Oblique Detonation Waves (경사 데토네이션파의 근사 해석 모델과 비정상 상세구조)

  • Choi Jeong-Yeol;Kim Don-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.136-140
    • /
    • 2005
  • By extending one-dimensional ZND detonation structure analysis model, a simple model for two-dimensional oblique detonation wave structure analysis is presented by coupling Rankine-Hugoniot relation and chemical kinetics for oblique shock wave and oblique detonation wave. Base on this study, two-dimensional fluid dynamics analysis is carried out to investigate the detailed unsteady structure of oblique detonation waves involving triple point, transverse waves and cellular structures. CFD results provide a deeper insight into the detailed structure of oblique detonation waves, and the simple model could be used as a unified design tool for hypersonic propulsion systems employing oblique detonation wave as combustion mechanism.

  • PDF

The Review and Investigation of High Temperature Heater Development (고온 공기 가열기 개발 현황 조사 및 고찰)

  • Kim, Jeongwoo;Lee, Jungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.90-98
    • /
    • 2016
  • A high temperature heater is required to supply high temperature air to the hypersonic propulsion system in order to simulate high velocity flying condition during the ground test. Various high temperature heaters were reviewed, categorized, and analyzed in this paper. Heaters were categorized in 4 groups; in-stream combustion heater, electric arc heater, storage heater, and heat exchange heater. Each group has its own advantages and disadvantages, so the heater should be selected considering its purpose.

Experimental Studies on Scramjet Tested in a Freejet Facility

  • Chang, Xinyu;Chen, Lihong;Gu, Hongbin;Yu, Gong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.34-40
    • /
    • 2004
  • Two different type scramjet models with side-wall compression and top-wall compression inlets have been tested in HPTF (Hypersonic Propulsion Test Facility) under the experimental conditions of Mach number 5.8, total temperature 1700K, total pressure 4.5㎫ and mass flow rate 3.5kg/s. The liquid kerosene was used as main fuel for the scramjets. In order to get fast ignition in the combustor, a small amount of hydrogen was used as a pilot. A strut with alternative tail was employed for increasing the compression ratio and for mixing enhancement in the side-wall compression case. Recessed cavities were used as a flameholder for combustion stability. The combustion efficiency was estimated by one dimensional theory. The uniformity of the facility nozzle flow was verified by a scanning pitot rake. The experimental results showed that the kerosene fuel was successfully ignited and stable combustion was achieved for both scramjet models. However the thrusts were still less than the model drags due to the low combustion efficiencies.

  • PDF

Thrust Measurement in a Impulse Facility (충격파 시험장치를 이용한 추력 측정)

  • Jin, Sangwook;Hwang, Kiyoung;Park, Dongchang;Min, Seongki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.310-319
    • /
    • 2017
  • This paper introduces the method how to measure the thrust in impulse facility. In a Facility having such a short duration time of steady flow, there's no time to reach a steady state of the forces acting on model so that the test model vibrates until the end of the flow. The forces exerted on an engine exist with vibration so that the usual force balance can not be used. SWFB(Stress Wave Force Balance) technique is utilized in a shock tunnel to get the thrust. As an example, a model force balance has been calculated its strain against impulse force by using FEM(Finite Element Method). A transfer function between the impulse force and strain has been obtained by the way of de-convolution.

  • PDF

Heat Transfer Analysis for Endothermic Reacting Fluids

  • Kimura, Hiroyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.346-357
    • /
    • 2008
  • Endothermic fuels are known as a probable fuel for hypersonic atmospheric flight vehicles and advanced propulsion systems, as well as cryogenic fuels. Especially, from the standpoint of the advanced regenerative cooling use, they are quite useful as a coolant fuel because of their large heat sink due to their chemical decompositions; so-called endothermic cooling effect. However, no heat transfer equations have been proposed taking into account such endothermic reactive behaviors concretely. This paper describes an analytical method for evaluation of the heat transfer rates between endothermic reacting coolant fuel and coolant-side wall in the regenerative cooling passages. Heat transfer mechanism is indicated based on a classical transport-phenomenological approach. A new relational expression of Nusselt number ratio for forcedconvective heat transfer with such endothermic reactions is also proposed by theoretical approaches using some classical hypotheses. Its applicability is assessed provisionally by comparison with confirmed results of heated tube tests for supercritical JP-7 fuel carried out at NASA Lewis Research Center, using its heat sink characteristics evaluated by United Technologies Research Center(UTRC). As a result, it has been suggested that the proposed relational equation is applicable to the evaluation of enhancement of Nusselt numbers due to such reactions in developed turbulent flows such as in the regenerative cooling passages.

  • PDF

On the Use of Standing Oblique Detonation Waves in a Shcramjet Combustor

  • Fusina, Giovanni;Sislian, Jean P.;Schwientek, Alexander O.;Parent, Bernard
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.671-686
    • /
    • 2004
  • The shock-induced combustion ramjet (shcramjet) is a hypersonic airbreathing propulsion concept which over-comes the drawbacks of the long, massive combustors present in the scramjet by using a standing oblique detonation wave (a coupled shock-combustion front) as a means of nearly instantaneous heat addition. A novel shcramjet combustor design that makes use of wedge-shaped flameholders to avoid detonation wave-wall interactions is proposed and analyzed with computational fluid dynamics (CFD) simulations in this study. The laminar, two-dimensional Navier-Stokes equations coupled with a non-equilibrium hydrogen-air combustion model based on chemical kinetics are used to represent the physical system. The equations are solved with the WARP (window-allocatable resolver for propulsion) CFD code (see: Parent, B. and Sislian, J. P., “The Use of Domain Decomposition in Accelerating the Convergence of Quasihyperbolic Systems”, J. of Comp. Physics, Vol. 179, No. 1,2002, pages 140-169). The solver was validated with experimental results found in the literature. A series of steady-state numerical simulations was conducted using WARP and it was deter-mined by means of thrust potential calculations that this combustor design is a viable one for shcramjet propulsion: assuming a shcramjet flight Mach number of twelve at an altitude of 36,000 m, the geometrical dimensions used for the combustor give rise to an operational range for combustor inlet Mach numbers between six and eight. Different shcramjet flight Mach numbers would require different combustor dimensions and hence a variable geometry system in or-der to be viable.

  • PDF

Performance Evaluation of Hypersonic Turbojet Experimental Aircraft Using Integrated Numerical Simulation with Pre-cooled Turbojet Engine

  • Miyamoto, Hidemasa;Matsuo, Akiko;Kojima, Takayuki;Taguchi, Hideyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.671-679
    • /
    • 2008
  • The effect of Pre-cooled Turbojet Engine installation and nozzle exhaust jet on Hypersonic Turbojet EXperimental aircraft(HYTEX aircraft) were investigated by three-dimensional numerical analyses to obtain aerodynamic characteristics of the aircraft during its in-flight condition. First, simulations of wind tunnel experiment using small scale model of the aircraft with and without the rectangular duct reproducing engine was performed at M=5.1 condition in order to validate the calculation code. Here, good agreements with experimental data were obtained regarding centerline wall pressures on the aircraft and aerodynamic coefficients of forces and moments acting on the aircraft. Next, full scale integrated analysis of the aircraft and the engine were conducted for flight Mach numbers of M=5.0, 4.0, 3.5, 3.0, and 2.0. Increasing the angle of attack $\alpha$ of the aircraft in M=5.0 flight increased the mass flow rate of the air captured at the intake due to pre-compression effect of the nose shockwave, also increasing the thrust obtained at the engine plug nozzle. Sufficient thrust for acceleration were obtained at $\alpha=3$ and 5 degrees. Increase of flight Mach number at $\alpha=0$ degrees resulted in decrease of mass flow rate captured at the engine intake, and thus decrease in thrust at the nozzle. The thrust was sufficient for acceleration at M=3.5 and lower cases. Lift force on the aircraft was increased by the integration of engine on the aircraft for all varying angles of attack or flight Mach numbers. However, the slope of lift increase when increasing flight Mach number showed decrease as flight Mach number reach to M=5.0, due to the separation shockwave at the upper surface of the aircraft. Pitch moment of the aircraft was not affected by the installation of the engines for all angles of attack at M=5.0 condition. In low Mach number cases at $\alpha=0$ degrees, installation of the engines increased the pitch moment compared to no engine configuration. Installation of the engines increased the frictional drag on the aircraft, and its percentage to the total drag ranged between 30-50% for varying angle of attack in M=5.0 flight.

  • PDF

Design Study of a Dual-Mode Ramjet Engine with Large Backward-Facing Step (큰 후향 계단이 있는 이중 모드 램젯 엔진의 설계 연구)

  • Yang, Inyoung;Lee, Yang-Ji;Lee, Kyung-Jae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.33-41
    • /
    • 2015
  • Scaled model of a dual-mode ramjet engine with large backward-facing step, as a component of the rocket-based combined cycle engine, was designed. Design parameters were derived for this engine with the consideration of application for the rocket-based combined cycle engine. Design methodology was established for these design parameters. The design was partially verified through numerical study. Flow characteristics of the dual-mode ramjet engine with large backward-facing step was investigated experimentally. The design methodology for relevant design parameters established in this study was verified as feasible.

Gasdynamic Adjustment at Modeling of Flight Conditions Appropriate M=6

  • 우관제
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.8-8
    • /
    • 2000
  • In this paper are presented main power and gasdynamic characteristics of C-l6VK hypersonic test cell of Research Test Center of CIAM. Gasdynamic adjustment of the C-l6VK test cell was carried out with the working section constructed on scheme of Ramjet/scramjet test in free stream. Gasdynamic adjustment was conducted stage by stage in tile following sequence. First, check and preparation of all technical systems and checking measuring system. Than determination of the characteristics of test cell on cold (without the heating of air at entrance) regime and determination of the characteristics of test cell on regimes with the heating of air. Finally determination of tile characteristics of test cell with the loading of the working part by object. On tile final stage of gasdynamic adjustment two experiments with tile axisymmetric Scramjet model loaded into the working part of test cell were conducted. The first experiment was conducted with the purpose of determination of flow parameters with the object leaded into the working part and verification of experiment cyclogram. The second experiment was conducted with injection of hydrogen into the combustion chamber of object, that is tile conditions on test cell simulated Scramjet flight Mach number M = 6. Such methodology of gasdynamic adjustment allows to determine influence of experimental object on flow parameters in the working part at different conditions of experiment (with the burning in combustion chamber of object and without the homing), and also to compare flow characteristics in the object duct.

  • PDF