• 제목/요약/키워드: Hyperparameter 최적화

검색결과 40건 처리시간 0.024초

회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교 (Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed)

  • 문기영;김형진;황세윤;이장현
    • 한국항해항만학회지
    • /
    • 제46권3호
    • /
    • pp.280-288
    • /
    • 2022
  • 본 연구는 정상 가동 중에도 회전수가 변하는 기기의 이상 및 고장 진단 방안을 다루고 있다. 회전수가 변함에 따라 비정상적 시계열 특성을 내포한 센서 데이터에 기계학습을 적용할 수 있는 절차를 제시하고자 하였다. 기계학습으로는 k-Nearest Neighbor(k-NN), Support Vector Machine(SVM), Random Forest을 사용하여 이상 및 고장 진단을 수행하였다. 또한 진단 정확성을 비교할 목적으로 이상 감지에 오토인코더, 고장진단에는 합성곱 기반의 Conv1D도 추가로 이용하였다. 비정상적 시계열로부터 통계 및 주파수 속성으로 구성된 시계열 특징 벡터를 추출하고, 추출된 특징 벡터에 정규화 및 차원 축소 기법을 적용하였다. 특징 벡터의 선택과 정규화, 차원 축소 여부에 따라 달라지는 기계학습의 진단 정확도를 비교하였다. 또한, 적용된 학습 알고리즘 별로 초매개변수 최적화 과정과 적층 구조를 설명하였다. 최종적으로 기존의 심층학습과 비교하여, 기계학습도 가변 회전기기의 고장을 정확하게 진단할 수 있는 절차를 제시하였다.

영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출 (Road Extraction from Images Using Semantic Segmentation Algorithm)

  • 오행열;전승배;김건;정명훈
    • 한국측량학회지
    • /
    • 제40권3호
    • /
    • pp.239-247
    • /
    • 2022
  • 현대에는 급속한 산업화와 인구 증가로 인해 도시들이 더욱 복잡해지고 있다. 특히 도심은 택지개발, 재건축, 철거 등으로 인해 빠르게 변화하는 지역에 해당한다. 따라서 자율주행에 필요한 정밀도로지도와 같은 다양한 목적을 위해 빠른 정보 갱신이 필요하다. 우리나라의 경우 기존 지도 제작 과정을 통해 지도를 제작하면 정확한 공간정보를 생성할 수 있으나 대상 지역이 넓은 경우 시간과 비용이 많이 든다는 한계가 있다. 지도 요소 중 하나인 도로는 인류 문명을 위한 많은 다양한 자원을 제공하는 중추이자 필수적인 수단에 해당한다. 따라서 도로 정보를 정확하고 신속하게 갱신하는 것이 중요하다. 이 목표를 달성하기 위해 본 연구는 Semantic Segmentation 알고리즘인 LinkNet, D-LinkNet 및 NL-LinkNet을 사용하여 광주광역시 도시철도 2호선 공사 현장을 촬영한 드론 정사영상에서 도로를 추출한 다음 성능이 가장 높은 모델에 하이퍼 파라미터 최적화를 적용하였다. 그 결과, 사전 훈련된 ResNet-34를 Encoder로 사용한 LinkNet 모델이 85.125 mIoU를 달성했다. 향후 연구 방향으로 최신 Semantic Segmentation 알고리즘 또는 준지도 학습 기반 Semantic Segmentation 기법을 사용하는 연구의 결과와의 비교 분석이 수행될 것이다. 본 연구의 결과는 기존 지도 갱신 프로세스의 속도를 개선하는 데 도움을 줄 수 있을 것으로 예상된다.

머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구 (A study on EPB shield TBM face pressure prediction using machine learning algorithms)

  • 권기범;최항석;오주영;김동구
    • 한국터널지하공간학회 논문집
    • /
    • 제24권2호
    • /
    • pp.217-230
    • /
    • 2022
  • 쉴드TBM (Tunnel Boring Machine) 터널 시공에 있어 막장압 관리는 막장면 붕괴, 지반침하 등을 방지하여 막장 안정성을 유지하는 데 중요한 역할을 담당한다. 특히, 챔버 내부의 굴착토로 막장압을 조절하는 토압식 쉴드TBM의 경우, 이수식 쉴드TBM에 비해 막장압의 관리가 어렵다. 본 연구에서는 국내 토압식 쉴드TBM 터널 시공 현장의 지반조건 및 굴진특성 데이터를 분석하여, 토압식 쉴드TBM 터널의 세그먼트 링별 막장압 예측모델을 제시하였다. 예측모델의 입력특성으로 7가지를 선정하였으며, 912개의 학습 데이터 세트(Training data set)와 228개의 시험 데이터 세트(Test data set)를 확보하였다. 최적의 토압식 쉴드TBM 막장압 예측모델 선정을 위하여 KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), XGB (eXtreme Gradient Boosting) 모델의 하이퍼파라미터(Hyperparameter)를 최적화하여 예측성능을 비교한 결과, RF 모델이 7.35 kPa의 평균 제곱근 오차(Root Mean Square Error, RMSE)로 가장 우수한 성능을 나타냈다. 추가적으로, RF 모델의 특성 중요도(Feature importance) 분석을 수행한 결과, 입력특성 중 수압의 영향도가 0.38로 가장 높았으며, 전반적으로 지반조건이 굴진특성보다 높은 중요도를 보여주었다.

GIS를 이용한 토양정보 기반의 배추 생산량 예측 수정모델 개발 (Development of a modified model for predicting cabbage yield based on soil properties using GIS)

  • 최연오;이재현;심재후;이승우
    • 한국측량학회지
    • /
    • 제40권5호
    • /
    • pp.449-456
    • /
    • 2022
  • 본 연구는 GIS를 통해 토양정보를 수집하고 가공하여 농산물 생산량을 예측하는 모델을 제안한다. 농산물 생산량 예측 딥러닝 알고리즘은 공개된 CNN-RNN 농산물 생산량 예측 모델 구조를 변경하여 국내 농산물 자료 환경에 적합하도록 새롭게 구축하였다. 기존모델은 두 가지 특징을 가지고 있는데 첫 번째는 농산물의 생산량을 해당 필지값이 아닌 당해 평균값으로 대체한다는 것이고 두 번째는 예측하는 연도의 데이터까지 학습한다는 것이다. 새로운 모델은 해당 필지의 값을 그대로 사용하여 데이터의 정확성을 확보하고 예측하고자 하는 연도 이전의 데이터만 가지고 학습할 수 있도록 네트워크 구조를 개선하였다. 제안한 CNN-RNN 모델은 1980년부터 2020년까지의 기상정보, 토양정보, 토양적성도, 생산량 데이터를 학습하여 김장용 가을배추의 지역별 단위면적당 생산량을 예측한다. 2018년부터 2021년까지 4개 연도별 자료에 대하여 계산하고 생산량을 예측한 결과, 테스트 데이터셋에 대한 오차백분율이 약 10% 내외로 실제값과 비교하여 정확도 높은 생산량 예측이 가능했고, 특히 전체 생산량 비중이 큰 지역에서의 생산량은 비교적 근접하게 예측하는 것으로 분석되었다. 또한 제안모델과 기존모델은 모두 학습자료 연도 수가 증가할수록 점점 오차가 작아지므로 학습데이터가 많아질수록 범용 성능은 향상되는 결과를 나타낸다.

딥러닝과 머신러닝을 이용한 아파트 실거래가 예측 (Apartment Price Prediction Using Deep Learning and Machine Learning)

  • 김학현;유환규;오하영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권2호
    • /
    • pp.59-76
    • /
    • 2023
  • 코로나 시대 이후 아파트 가격 상승은 비상식적이었다. 이러한 불확실한 부동산 시장에서 가격 예측 연구는 매우 중요하다. 본 논문에서는 다양한 부동산 사이트에서 자료 수집 및 크롤링을 통해 2015년부터 2020년까지 87만개의 방대한 데이터셋을 구축하고 다양한 아파트 정보와 경제지표 등 가능한 많은 변수를 모은 뒤 미래 아파트 매매실거래가격을 예측하는 모델을 만든다. 해당 연구는 먼저 다중 공선성 문제를 변수 제거 및 결합으로 해결하였다. 이후 의미있는 독립변수들을 뽑아내는 전진선택법(Forward Selection), 후진소거법(Backward Elimination), 단계적선택법(Stepwise Selection), L1 Regularization, 주성분분석(PCA) 총 5개의 변수 선택 알고리즘을 사용했다. 또한 심층신경망(DNN), XGBoost, CatBoost, Linear Regression 총 4개의 머신러닝 및 딥러닝 알고리즘을 이용해 하이퍼파라미터 최적화 후 모델을 학습시키고 모형간 예측력을 비교하였다. 추가 실험에서는 DNN의 node와 layer 수를 바꿔가면서 실험을 진행하여 가장 적절한 node와 layer 수를 찾고자 하였다. 결론적으로 가장 성능이 우수한 모델로 2021년의 아파트 매매실거래가격을 예측한 후 실제 2021년 데이터와 비교한 결과 훌륭한 성과를 보였다. 이를 통해 머신러닝과 딥러닝은 다양한 경제 상황 속에서 투자자들이 주택을 구매할 때 올바른 판단을 할 수 있도록 도움을 줄 수 있을 것이라 확신한다.

LSTM을 활용한 고속도로 교통정보 예측 모델 개발 방법론 (Methodology for Developing a Predictive Model for Highway Traffic Information Using LSTM)

  • 이요셉;진형석;김예진;박성호;윤일수
    • 한국ITS학회 논문지
    • /
    • 제22권5호
    • /
    • pp.1-18
    • /
    • 2023
  • 최근 빅데이터 및 딥러닝 기술의 발전으로 다양한 교통정보가 널리 수집 및 활용되고 있다. 특히 시계열 특성을 갖는 교통정보 예측 분야에서는 장단기 메모리(long short term memory, LSTM)가 널리 사용되고 있다. LSTM에 입력되는 시계열 데이터의 추세, 계절성, 주기 등이 상이하기 때문에 시계열 데이터를 기반으로 한 예측 모델에서도 데이터의 특성에 따라 하이퍼 파라미터의 적합한 값을 찾는 시행착오법이 필수적이다. 이에 적합한 하이퍼 파라미터를 찾는 방법론이 정립된다면, 정확도가 높은 모델 구성에 소요되는 시간을 줄일 수 있다. 따라서, 본 연구에서는 국내 고속도로 차량검지기 데이터와 LSTM을 기반으로 교통정보 예측 모델을 개발하였으며, LSTM의 하이퍼 파라미터별 평가지표 변화를 통해 예측 결과에 미치는 영향평가를 수행하였다. 또한, 이를 기반으로 교통분야에서 고속도로 교통정보 예측에 적합한 하이퍼 파라미터를 찾는 방법론을 제시하였다.

인공신경망을 활용한 동적 물성치 산정 연구 (Neural Network-Based Prediction of Dynamic Properties)

  • 민대홍;김영석;김세원;최현준;윤형구
    • 한국지반공학회논문집
    • /
    • 제39권12호
    • /
    • pp.37-46
    • /
    • 2023
  • 동적 물성치는 지반의 상세한 거동을 예측하기 위한 필수인자이나, 샘플 채취와 추가적인 실험이 동반되는 한계가 있다. 본 연구의 목적은 정적 지반 물성치를 기반으로 동적 지반 물성치를 예측하는 것으로 인공신경망을 활용하고자 하였다. 정적 물성치는 점착력, 내부마찰각, 함수비, 비중 그리고 일축압축강도로 선정하였으며 출력 값인 동적물성치는 압축파 속도와 전단파 속도로 결정하였다. 인공신경망 적용시 결과값의 신뢰성을 높이기 위해 Levenberg-Marquardt와 Bayesian regularization 방법을 적용하였으며, 각 최적화 방법에 따른 신뢰성을 비교하였다. 인공신경망 모델의 정확도는 결정계수로 나타냈으며, train과 test 과정 모두 0.9 이상의 값을 보여 해당 연구에서 구축한 인공신경망의 신뢰성이 높은 것으로 나타났다. 또한, 구축된 인공신경망 모델의 검증을 위해 새로운 입력 데이터에 대해서도 출력값의 신뢰성을 검증하였으며, 그 결과 높은 정확도를 보였다.

머신러닝 기법을 이용한 약물 분류 방법 연구 (A Study on the Drug Classification Using Machine Learning Techniques)

  • Anmol Kumar Singh;Ayush Kumar;Adya Singh;Akashika Anshum;Pradeep Kumar Mallick
    • 산업과 과학
    • /
    • 제3권2호
    • /
    • pp.8-16
    • /
    • 2024
  • 본 논문에서는 인구통계학적, 생리학적 특성을 기반으로 환자에게 가장 적합한 약물을 예측하는 것을 목표로 하는 약물 분류 시스템을 제시한다. 데이터 세트에는 적절한 약물을 결정하기 위한 목적으로 연령, 성별, 혈압(BP), 콜레스테롤 수치, 나트륨 대 칼륨 비율(Na_to_K)과 같은 속성들이 포함된다. 본 연구에 사용된 모델은 KNN(K-Nearest Neighbors), 로지스틱 회귀 분석 및 Random Forest이다. 하이퍼파라미터를 최적화하기 위해 5겹 교차 검증을 갖춘 GridSearchCV를 활용하였으며, 각 모델은 데이터 세트에서 훈련 및 테스트 되었다. 초매개변수 조정 유무에 관계없이 각 모델의 성능은 정확도, 혼동 행렬, 분류 보고서와 같은 지표를 사용하여 평가되었다. GridSearchCV를 적용하지 않은 모델의 정확도는 0.7, 0.875, 0.975인 반면, GridSearchCV를 적용한 모델의 정확도는 0.75, 1.0, 0.975로 나타났다. GridSearchCV는 로지스틱 회귀 분석을 세 가지 모델 중 약물 분류에 가장 효과적인 모델로 식별했으며, K-Nearest Neighbors가 그 뒤를 이었고 Na_to_K 비율은 결과를 예측하는 데 중요한 특징인 것으로 밝혀졌다.

BERT 기반 자연어처리 모델의 미세 조정을 통한 한국어 리뷰 감성 분석: 입력 시퀀스 길이 최적화 (Fine-tuning BERT-based NLP Models for Sentiment Analysis of Korean Reviews: Optimizing the sequence length)

  • 황성아;박세연;장백철
    • 인터넷정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.47-56
    • /
    • 2024
  • 본 연구는 BERT 기반 자연어처리 모델들을 미세 조정하여 한국어 리뷰 데이터를 대상으로 감성 분석을 수행하는 방법을 제안한다. 이 과정에서 입력 시퀀스 길이에 변화를 주어 그 성능을 비교 분석함으로써 입력 시퀀스 길이에 따른 최적의 성능을 탐구하고자 한다. 이를 위해 의류 쇼핑 플랫폼 M사에서 수집한 텍스트 리뷰 데이터를 활용한다. 웹 스크래핑을 통해 리뷰 데이터를 수집하고, 데이터 전처리 단계에서는 긍정 및 부정 만족도 점수 라벨을 재조정하여 분석의 정확성을 높였다. 구체적으로, GPT-4 API를 활용하여 리뷰 텍스트의 실제 감성을 반영한 라벨을 재설정하고, 데이터 불균형 문제를 해결하기 위해 6:4 비율로 데이터를 조정하였다. 의류 쇼핑 플랫폼에 존재하는 리뷰들을 평균적으로 약 12 토큰의 길이를 띄었으며, 이에 적합한 최적의 모델을 제공하기 위해 모델링 단계에서는 BERT기반 사전학습 모델 5가지를 활용하여 입력 시퀀스 길이와 메모리 사용량에 집중하여 성능을 비교하였다. 실험 결과, 입력 시퀀스 길이가 64일 때 대체적으로 가장 적절한 성능 및 메모리 사용량을 나타내는 경향을 띄었다. 특히, KcELECTRA 모델이 입력 시퀀스 길이 64에서 가장 최적의 성능 및 메모리 사용량을 보였으며, 이를 통해 한국어 리뷰 데이터의 감성 분석에서 92%이상의 정확도와 신뢰성을 달성할 수 있었다. 더 나아가, BERTopic을 활용하여 새로 입력되는 리뷰 데이터를 카테고리별로 분류하고, 최종 구축한 모델로 각 카테고리에 대한 감성 점수를 추출하는 한국어 리뷰 감성 분석 프로세스를 제공한다.

기계학습 기반 해양 노출 환경의 콘크리트 교량 데이터를 활용한 염화물 확산계수 예측모델 개발 (Development of a Machine Learning-Based Model for the Prediction of Chloride Diffusion Coefficient Using Concrete Bridge Data Exposed to Marine Environments)

  • 남우석;임홍재
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권5호
    • /
    • pp.20-29
    • /
    • 2024
  • 염화물 확산계수는 해양환경에 위치한 콘크리트 교량의 내구성 평가를 위한 중요한 지표 중 하나이다. 본 논문에서는 기존 연구에서 고려하지 않았던 해양 노출 환경(대기중, 비말대, 간만대)과 공용 중인 콘크리트 교량의 데이터를 활용해 염화물 확산계수 예측 모델을 개발하였다. 이를 위해 교량 하부구조에서 취득한 염화물 프로파일 데이터를 활용하였고 데이터 전처리 후 기계학습 모델인 RF, GBM, KNN을 하이퍼파라미터 튜닝을 통해 최적화 하였다. 콘크리트 물성치를 포함한 6개 변수(W/B, 시멘트 종류, 굵은골재 부피 비율, 공용연수, 강도, 노출 환경) 모델과 노출 환경을 고려하지 않은 5개 변수 모델, 정밀안전진단에서 취득 가능한 3개 변수(공용연수, 강도, 노출 환경) 모델을 개발하여 성능을 비교·검토 하였다. 그 결과 해양 환경에 위치한 콘크리트 교량의 경우 노출 환경을 고려함에 따라 염화물 확산계수 예측 모델의 성능을 향상시킬 수 있음을 확인하였으며, 또한 정밀안전진단 데이터만으로도 염화물 확산계수를 효과적으로 예측할 수 있음을 확인하였다.