• Title/Summary/Keyword: Hyperparameter 최적화

Search Result 40, Processing Time 0.029 seconds

LSTM Hyperparameter Optimization for an EEG-Based Efficient Emotion Classification in BCI (BCI에서 EEG 기반 효율적인 감정 분류를 위한 LSTM 하이퍼파라미터 최적화)

  • Aliyu, Ibrahim;Mahmood, Raja Majid;Lim, Chang-Gyoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1171-1180
    • /
    • 2019
  • Emotion is a psycho-physiological process that plays an important role in human interactions. Affective computing is centered on the development of human-aware artificial intelligence that can understand and regulate emotions. This field of study is also critical as mental diseases such as depression, autism, attention deficit hyperactivity disorder, and game addiction are associated with emotion. Despite the efforts in emotions recognition and emotion detection from nonstationary, detecting emotions from abnormal EEG signals requires sophisticated learning algorithms because they require a high level of abstraction. In this paper, we investigated LSTM hyperparameters for an optimal emotion EEG classification. Results of several experiments are hereby presented. From the results, optimal LSTM hyperparameter configuration was achieved.

A Study on Deep Learning Optimization by Land Cover Classification Item Using Satellite Imagery (위성영상을 활용한 토지피복 분류 항목별 딥러닝 최적화 연구)

  • Lee, Seong-Hyeok;Lee, Moung-jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1591-1604
    • /
    • 2020
  • This study is a study on classifying land cover by applying high-resolution satellite images to deep learning algorithms and verifying the performance of algorithms for each spatial object. For this, the Fully Convolutional Network-based algorithm was selected, and a dataset was constructed using Kompasat-3 satellite images, land cover maps, and forest maps. By applying the constructed data set to the algorithm, each optimal hyperparameter was calculated. Final classification was performed after hyperparameter optimization, and the overall accuracy of DeeplabV3+ was calculated the highest at 81.7%. However, when looking at the accuracy of each category, SegNet showed the best performance in roads and buildings, and U-Net showed the highest accuracy in hardwood trees and discussion items. In the case of Deeplab V3+, it performed better than the other two models in fields, facility cultivation, and grassland. Through the results, the limitations of applying one algorithm for land cover classification were confirmed, and if an appropriate algorithm for each spatial object is applied in the future, it is expected that high quality land cover classification results can be produced.

Hyperparameter Optimization of Autonomous Driving exploiting Piece and Conquer Fireworks Algorithm (Piece and Conquer Fireworks 알고리즘을 이용한 자율주행 알고리즘 하이퍼파라미터 최적화 기법)

  • MyeongJun Kim;Gun-Woo Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.365-366
    • /
    • 2023
  • 본 논문은 F1TENTH 와 같은 자율주행 경주 대회를 위한 고전적인 자율주행 알고리즘의 파라미터 최적화에 관한 연구를 다룬다. 고전적인 자율주행 알고리즘은 하이퍼파라미터의 영향을 크게 받고 더 나아가서 하이퍼파라미터의 설정에 따라서 성능의 차이가 크다. 이 하이퍼파라미터를 빠르게 찾기 위하여 Piece and Conquer Fireworks 방법을 제안한다. 결과적으로Random search에 비해서 일반 Fireworks알고리즘은 약8.3배, Piece and Conquer Fireworks알고리즘은 약 28.5배 빠른 성능을 보여준다.

A Data-driven Classifier for Motion Detection of Soldiers on the Battlefield using Recurrent Architectures and Hyperparameter Optimization (순환 아키텍쳐 및 하이퍼파라미터 최적화를 이용한 데이터 기반 군사 동작 판별 알고리즘)

  • Joonho Kim;Geonju Chae;Jaemin Park;Kyeong-Won Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.107-119
    • /
    • 2023
  • The technology that recognizes a soldier's motion and movement status has recently attracted large attention as a combination of wearable technology and artificial intelligence, which is expected to upend the paradigm of troop management. The accuracy of state determination should be maintained at a high-end level to make sure of the expected vital functions both in a training situation; an evaluation and solution provision for each individual's motion, and in a combat situation; overall enhancement in managing troops. However, when input data is given as a timer series or sequence, existing feedforward networks would show overt limitations in maximizing classification performance. Since human behavior data (3-axis accelerations and 3-axis angular velocities) handled for military motion recognition requires the process of analyzing its time-dependent characteristics, this study proposes a high-performance data-driven classifier which utilizes the long-short term memory to identify the order dependence of acquired data, learning to classify eight representative military operations (Sitting, Standing, Walking, Running, Ascending, Descending, Low Crawl, and High Crawl). Since the accuracy is highly dependent on a network's learning conditions and variables, manual adjustment may neither be cost-effective nor guarantee optimal results during learning. Therefore, in this study, we optimized hyperparameters using Bayesian optimization for maximized generalization performance. As a result, the final architecture could reduce the error rate by 62.56% compared to the existing network with a similar number of learnable parameters, with the final accuracy of 98.39% for various military operations.

Application of Time-series Cross Validation in Hyperparameter Tuning of a Predictive Model for 2,3-BDO Distillation Process (시계열 교차검증을 적용한 2,3-BDO 분리공정 온도예측 모델의 초매개변수 최적화)

  • An, Nahyeon;Choi, Yeongryeol;Cho, Hyungtae;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.532-541
    • /
    • 2021
  • Recently, research on the application of artificial intelligence in the chemical process has been increasing rapidly. However, overfitting is a significant problem that prevents the model from being generalized well to predict unseen data on test data, as well as observed training data. Cross validation is one of the ways to solve the overfitting problem. In this study, the time-series cross validation method was applied to optimize the number of batch and epoch in the hyperparameters of the prediction model for the 2,3-BDO distillation process, and it compared with K-fold cross validation generally used. As a result, the RMSE of the model with time-series cross validation was lower by 9.06%, and the MAPE was higher by 0.61% than the model with K-fold cross validation. Also, the calculation time was 198.29 sec less than the K-fold cross validation method.

Real-time ECG Data Bayesian Optimization Analysis for Rehabilitation Robots (재활 로봇을 위한 심전도(ECG) 실시간 데이터 베이지안 최적화 분석 기술)

  • Choi, Jin-Tak;Kang, Kyung-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.53-56
    • /
    • 2022
  • 본 논문에서는 심전도(ECG) 센서와 에지 컴퓨팅(Edge computing)을 활용하여 실시간 데이터와 Bayesian optimization을 통한 기계학습 알고리즘으로 재활 로봇에서 발목을 제어할 수 있는 Parameter(외골격 관련) 최적값을 출력한다. 심전도 센서 적용을 기반으로 하는 바이오 데이터 기술, 기계 학습(Bayesian optimization) 모델 접근 방식과 하드웨어 결합으로 재활 로봇 모터를 제어할 수 있는 Parameter 제공과 실시간 모터 제어 운영할 수 있도록 분석 플랫폼을 구축한다. 이 플랫폼을 이용해보다 효과적인 이동형 로봇설계 및 처리 방법을 연결할 수 있는 발판을 마련하였고, 로봇제어에 많이 사용하고 있는 매트랩 시뮬링크(Matlab simulink)를 연결할 수 있는 범용 통신 지원한다. 센서-전처리-인공지능 알고리즘-모터 제어 Parameter로 연계되는 데이터 가공과 처리 방법으로 최근 분석 기법을 적용하여 바이오 데이터 연구 활동과 이동형 재활 로봇 관련 데이터 분석 분야를 쉽게 접근할 수 있도록 한다.

  • PDF

Recent Research & Development Trends in Automated Machine Learning (자동 기계학습(AutoML) 기술 동향)

  • Moon, Y.H.;Shin, I.H.;Lee, Y.J.;Min, O.G.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.4
    • /
    • pp.32-42
    • /
    • 2019
  • The performance of machine learning algorithms significantly depends on how a configuration of hyperparameters is identified and how a neural network architecture is designed. However, this requires expert knowledge of relevant task domains and a prohibitive computation time. To optimize these two processes using minimal effort, many studies have investigated automated machine learning in recent years. This paper reviews the conventional random, grid, and Bayesian methods for hyperparameter optimization (HPO) and addresses its recent approaches, which speeds up the identification of the best set of hyperparameters. We further investigate existing neural architecture search (NAS) techniques based on evolutionary algorithms, reinforcement learning, and gradient derivatives and analyze their theoretical characteristics and performance results. Moreover, future research directions and challenges in HPO and NAS are described.

Experimental performance analysis on the non-negative matrix factorization-based continuous wave reverberation suppression according to hyperparameters (비음수행렬분해 기반 연속파 잔향 제거 기법의 초매개변숫값에 따른 실험적 성능 분석)

  • Yongon Lee; Seokjin Lee;Kiman Kim;Geunhwan Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.32-41
    • /
    • 2023
  • Recently, studies on reverberation suppression using Non-negative Matrix Factorization (NMF) have been actively conducted. The NMF method uses a cost function based on the Kullback-Leibler divergence for optimization. And some constraints are added such as temporal continuity, pulse length, and energy ratio between reverberation and target. The tendency of constraints are controlled by hyperparameters. Therefore, in order to effectively suppress reverberation, hyperparameters need to be optimized. However, related studies are insufficient so far. In this paper, the reverberation suppression performance according to the three hyperparameters of the NMF was analyzed by using sea experimental data. As a result of analysis, when the value of hyperparameters for time continuity and pulse length were high, the energy ratio between the reverberation and the target showed better performance at less than 0.4, but it was confirmed that there was variability depending on the ocean environment. It is expected that the analysis results in this paper will be utilized as a useful guideline for planning precise experiments for optimizing hyperparameters of NMF in the future.

Deep Learning based Singing Voice Synthesis Modeling (딥러닝 기반 가창 음성합성(Singing Voice Synthesis) 모델링)

  • Kim, Minae;Kim, Somin;Park, Jihyun;Heo, Gabin;Choi, Yunjeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.127-130
    • /
    • 2022
  • This paper is a study on singing voice synthesis modeling using a generator loss function, which analyzes various factors that may occur when applying BEGAN among deep learning algorithms optimized for image generation to Audio domain. and we conduct experiments to derive optimal quality. In this paper, we focused the problem that the L1 loss proposed in the BEGAN-based models degrades the meaning of hyperparameter the gamma(𝛾) which was defined to control the diversity and quality of generated audio samples. In experiments we show that our proposed method and finding the optimal values through tuning, it can contribute to the improvement of the quality of the singing synthesis product.

  • PDF

Performance Evaluation of YOLOv5 Model according to Various Hyper-parameters in Nuclear Medicine Phantom Images (핵의학 팬텀 영상에서 초매개변수 변화에 따른 YOLOv5 모델의 성능평가)

  • Min-Gwan Lee;Chanrok Park
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • The one of the famous deep learning models for object detection task is you only look once version 5 (YOLOv5) framework based on the one stage architecture. In addition, YOLOv5 model indicated high performance for accurate lesion detection using the bottleneck CSP layer and skip connection function. The purpose of this study was to evaluate the performance of YOLOv5 framework according to various hyperparameters in position emission tomogrpahy (PET) phantom images. The dataset was obtained from QIN PET segmentation challenge in 500 slices. We set the bounding box to generate ground truth dataset using labelImg software. The hyperparameters for network train were applied by changing optimization function (SDG, Adam, and AdamW), activation function (SiLU, LeakyRelu, Mish, and Hardwish), and YOLOv5 model size (nano, small, large, and xlarge). The intersection over union (IOU) method was used for performance evaluation. As a results, the condition of outstanding performance is to apply AdamW, Hardwish, and nano size for optimization function, activation function and model version, respectively. In conclusion, we confirmed the usefulness of YOLOv5 network for object detection performance in nuclear medicine images.