• 제목/요약/키워드: Hypereutectic Al-Si alloy

검색결과 48건 처리시간 0.029초

가스 분무 공정에 의해 제조된 Al-Si 합금 분말 압출재의 열처리에 의한 미세조직 및 기계적 특성 변화 (Effect of Heat Treatment on the Microstructure and Mechanical Properties for Al-Si Alloyed Powder Material by Gas Atomizing and Hot Extrusion Process)

  • 남기영;진형호;김용진;윤석영;박용호
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.421-426
    • /
    • 2006
  • The microstructural and mechanical properties of Al-Si alloyed powder, prepared by gas atomization fallowed by hot extrusion, were studied by optical and scanning electron microscopies, hardness and wear testing. The gas atomized Al-Si alloy powder exhibited uniformly dispersed Si particles with particle size ranging from 5 to $8{\mu}m$. The hot extruded Al-Si alloy shows the average Si particle size of less than $1{\mu}m$. After heat-treatment, the average particle size was increased from 2 to $5{\mu}m$. Also, mechanical properties of extruded Al-Si alloy powder were analyzed before and after heat-treatment. As expected from the microstructural analysis, the heat-treated samples resulted in a decrease in the hardness and wear resistance due to Si particle growth. The friction coefficient of heat-treated Al-Si alloyed powder showed higher value tough all sliding speed. This behavior would be due to abrasive wear mechanism. As sliding speed increases, friction coefficient and depth and width of wear track increase. No significant changes occurred in the wear track shape with increased sliding speed.

Al-20Si-5.5Fe-1.2Mg-0.5Mn 합금분말의 치밀화에 미치는 소결온도와 분위기의 영향 (Effects of Sintering Temperature and Atmosphere on Densification of Hypereutectic Al-Si Alloy Powders)

  • 이재욱;박상빈;양상선;김용진
    • 한국분말재료학회지
    • /
    • 제15권3호
    • /
    • pp.196-203
    • /
    • 2008
  • The densification behavior of Al-20Si-5.5Fe-1.2Mg-0.5Mn powders was investigated through micro-structure analysis of sintered specimens. The specimens sintered in vacuum or in high purity (99.999%) nitrogen showed porous near-surface microstructures. The densification of near-surface part was enhanced by means of ultra-high purity (99.9999%) nitrogen atmosphere. The relationship between slow densification and oxide surfaces of Al alloy powders was discussed. And the effects of Mg addition, nitrogen gas, and humidity on densification were discussed. In addition, the rapid growth of primary Si crystals above the critical temperature was reported.

Al-Si합금(合金)의 CFR 과 MDE 에 미치는 냉각속도(冷却速度)의 영향(影響) (The Influence of Cooling Rates on the CFR and the MDE of Al-Si Alloys.)

  • 권혁무;김수영
    • 한국주조공학회지
    • /
    • 제4권4호
    • /
    • pp.14-19
    • /
    • 1984
  • In order to clarify the solidification mechanism of Al-Si alloy, Mushy Degree of Eutectic Solidification (MDE) and Centerline Feeding Resistance (CFR) were systematically studied by casting with various compositions of $Al-(6{\sim}18%)$ Si alloys into several kinds of molds having different cooling rates. The results are as follows: 1. CFR% increases slightly as solute concentration increases, but decreases remarkably as the cooling rate of the mold increases, that is, the composition dependence of the alloys has more effect on the change of CFR% than that of the mold cooling rate. 2. The composition dependence of MDE value has the same tendency as that of Degree of Eutectic Solidification (DES). MDE value within the range of hypereutectic composition is larger than that of hypoeutectic and it represents the maximum value at eutectic composition. The higher the cooling rate is, the less the MDE value is.

  • PDF

과공정 Al-Si 합금의 초정 Si 미세화에 미치는 냉각속도와 P 첨가량의 영향 (Effect of Cooling Rate and the Amount of P Addition on the Refinement of Primary Si in Hypereutectic Al-Si Alloy)

  • 한상봉;김지훈;류봉선;박원욱;예병준
    • 한국주조공학회지
    • /
    • 제17권4호
    • /
    • pp.347-355
    • /
    • 1997
  • It is well known that the coarse primary Si in hypereutectic Al-Si alloys deteriorate castability, machinability, and mechanical properties. So, many treatment has been tried to refine the primary Si increasing cooling rate and adding refinement agent. Therefore. the purpose of our work was the observation of the effect on the refinement of primary Si and the analysis of the trend to apply to the casting process by changing the amount of P addition and the cooling rate while fixing the temperature at $750^{\circ}C$ of P addition and the type of AlCuP. In the condition of amount of P addition was fixed, primary Si was finer as cooling rate increased but in case of cooling rate was fixed, the effect of refinement was resisted as incersed the amount of P addition. At a relatively slow cooling rate of $22^{\circ}C/sec$, refinement was governed by the amount of P addition rather than cooling rate. At elevated cooling rate of $51^{\circ}C/sec$ and $99^{\circ}C/sec$, the undercooling due to faster cooling rate promoted nucleation of primary Si rather than P addition more significantly.

  • PDF

Characterization of Al-15wt.%Si Functional Automotive Component by Partial Squeeze and Vacuum Die Casting Process

  • Kim, Eok-Soo
    • 한국주조공학회지
    • /
    • 제24권3호
    • /
    • pp.153-158
    • /
    • 2004
  • 본 연구에서는 기존 고압주조법의 해결과제인 고속충진 시 혼입되는 금형 cavity 내부의 유해 gas에 의한 gas porosity를 제어하기 위한 고속 사출 전 진공시스템 설계와 응고과정에서 발생되는 응고수축에 의한 shrinkage를 효과적으로 제어하기 위한 국부가압 스퀴즈의 조합시스템의 설계로 최적의 기계적 성질을 갖는 부품을 제조할 수 있는 공법을 개발하였다. 또한 개발된 신공법으로 자동차용 고내마모성 요구부품인 Reaction Shaft Support에 기존의 주철제를 대체하는 Al-15wt.%Si 과공정합금을 적용하여 시제품을 제조하였으며, 기존의 공법과 비교한 결과, 내부 porosity가 없는 미세하고 균일한 공정 및 초정 Si의 미세조직을 얻을 수 있었고, 기계적 특성평가에서도 매우 우수한 결과를 얻을 수 있었다.

과공정 Al-Si 합금의 열팽창 특성에 미치는 Si 입자 크기의 영향 (Effect of Si Particle Size on the Thermal Properties of Hyper-eutectic Al-Si Alloys)

  • 김철현;주대헌;김명호;윤의박;윤우영;김권희
    • 한국주조공학회지
    • /
    • 제23권4호
    • /
    • pp.195-203
    • /
    • 2003
  • Hyper-eutectic Al-Si alloy is used much to automatic parts and material for the electronic parts because of the low coefficient of thermal expansion, superior thermal stability and superior wear resistance. In this work, A390 alloy specimens were fabricated for control of the Si particle size by various processes, such as spray-casting, permanent mold-casting and squeeze-casting. To minimize the effect of microporosity of the specimens, hot extrusion was carried out under equal condition. Each specimens were evaluated tensile properties at room temperature and thermal expansion properties in the range from room temperature to 400$^{\circ}C$. Ultimate tensile strength and elongation of the spray-cast and extruded specimens which have fine and well distributed Si particles were improved greatly compare to the permanent mold-cast and extruded ones. Specimens which have finer Si particles showed higher ultimate tensile strength and elongation than those having large Si particle size, and coefficient of thermal expansion of the specimens increased linearly with Si particle size. In case of the repeated high temperature exposures, thermal expansion properties of the spray-cast and extruded specimens were found to be more stable than those of the others due to the effect of fine and well distributed Si particles.

균일가열법으로 제조한 반용융 A390합금의 미세조직 및 성형성 (Microstructure and Formability of Semi-solid A390 Alloys made by uniform heating)

  • 엄정필;장동훈;김득규;윤병은;임수근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 고액공존금속의 성형기술 심포지엄
    • /
    • pp.160-173
    • /
    • 1997
  • Microstructure of hypereutectic Al-17wt.% Si alloy, fabricated by mechanical stirring and by reheating at semi-solid state, was investigated by optical microscope. Flow behavior semi-solid metal also was investigated at diffentent mould temperatures 280$^{\circ}C$, 290$^{\circ}C$ and 300$^{\circ}C$. Size of silicon particles were increased over 100$\mu\textrm{m}$ during solidification as a result of stirring. It is considered as microstructural coarsening by bonding between neighbouring primary silion particles during stirring of slurry. In case of reheating at semi-solid state, however, primary silicon particle was not increased at size of 40$\mu\textrm{m}$ and nearly spherical aluminum solde particle also could be obtained uniformly in distribution. The fludity of Al-17wt.% Si alloys at semi-solid state was improved when solid fraction was 0.7 at mould temperature of 300$^{\circ}C$ than other conditions.

  • PDF