• Title/Summary/Keyword: Hyperelastic Material

Search Result 64, Processing Time 0.026 seconds

Natural Frequency Analysis of a NPT with Honeycomb Spokes (Honeycomb 스포크로 된 비공기압 타이어의 고유진동수 해석)

  • Jo, Hong-Jun;Lee, Chi-Hoon;Kim, Ki-Hong;Kim, Kam-Chan;Kim, Doo-Man
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.2
    • /
    • pp.33-39
    • /
    • 2011
  • The vibration characteristic of tires is one of very important issues which heavily affect the noise and comfort on driving. Therefore, when the new tire is designed, the vibration characteristic of tire should be considered. In this paper, the vibration characteristic of non-pneumatic tire is investigated for geometric of NPT which is designed by cell angle of spoke. The analysis is based on the finite element method and used ABAQUS program, which is able to non-linear analysis. The material of NPT is used for the Ogden energy model, which is model of hyperelastic material. This paper investigate natural frequency and modal of NPT and compare result of NPT with it of pneumatic tire.

Structural Simulation of Wrist Band for Wearable Device According to Design and Material Model

  • Kwon, Soon Yong;Cho, Jung Hwan;Yoo, Jin;Cho, Chul Jin;Cho, Sung Hwan;Woo, In Young;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.226-233
    • /
    • 2018
  • Elastomers based on the thermoplastics are widely used in rubber industries. Thermoplastic elastomers have the advantages of an easy shaping process and elimination of recycling problems. Thermoplastic polyester elastomer (TPE) is used for making rubber bands in wearable devices and its applications are increasing. In this study, five wrist bands were designed and their mechanical behaviors were examined by computer simulation, using hyper elastic models, Mooney-Rivlin and Ogden models, and a linear elastic model. Simulation results were compared and discussed in terms of band design and material model.

Analytical Approach to Deformation of a Soft Rotary Actuator with Double Curvature Shell Shape (이중 곡률 쉘 모양의 소프트 회전 액추에이터 변형에 대한 수식적 접근)

  • Lee, Young min;Choi, Hyouk ryeol;Koo, Ja choon
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.68-75
    • /
    • 2022
  • In this paper, we considered the deformation shape of the soft rotation actuator as a double curvature shell and proceeded with the analytical development. Since the response of the hyperelastic material has a large nonlinear deformation, the analytical approach is very complicated and the solution cannot be easily obtained. it is assumed that the behavior of the flexible body, which is a superelastic material, takes the form of a double curvature shell, and the formulas for calculating the deformation are simplified. In this process, equilibrium equations in the related coordinate system representing a double curvature shell were derived. In addition, assuming a thin shell, the stress component in the thickness direction was ignored, and the equation was developed by adding the assumption of free rotation without load. In order to verify the analytically calculated value in this way, an experiment was conducted and the results were compared.

A Study on the Structural Characteristics of the Hollow Casket made of Silicon Rubber (실리콘 중공 가스켓의 구조적 특성에 관한 연구)

  • Lee, Seung-Ha;Lee, Tae-Won;Sim, Woo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2044-2051
    • /
    • 2002
  • In this paper, the deformed shape, the contact forces and the load-displacement curves of the real hollow gasket made of silicon rubber are analyzed using a commercial finite element program MARC. In the numerical analysis, the silicon rubber is assumed to have the properties of the geometric and material nonlinearity and the incompressibility, and the hyperelastic constitutive relations of that material are represented by the generalized Mooney-Rivlin and Ogden models. The outer frictional contact between the hollow gasket and the groove of rigid container and the inner self-contact of the hollow gasket are taken into account in the course of numerical computation. Experiments are also performed to obtain the material data for numerical computation and to show the validity of the mechanical deformation of the hollow gasket, resulting in good agreements between them.

LMU Design Optimization for the Float-Over Installation of Floating Offshore Platforms (부유식 해양구조물의 플로트오버 설치용 LMU 최적설계)

  • Kim, Hyun-Seok;Park, Byoungjae;Sung, Hong Gun;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2021
  • A Leg Mating Unit (LMU) is a device utilized during the float-over installation of offshore structures that include hyperelastic pads and mating part. The hyperelastic pads absorb the loads, whereas the mating part works as guidance between topside and supporting structures during the mating sequence of float-over installation. In this study, the design optimization of an LMU for the float-over installation of floating-type offshore structures is conducted to enhance the performance and to satisfy the requirements defined by classification society regulations. The initial dimensions of the LMU are referred to the dimensions of those used in fixed-type float-over installation because only the location and the number of LMUs are known. The two-parameter Mooney-Rivlin model is adopted to describe the hyperelastic pads under given material parameters. Geometric variables, such as the thickness, height, and width of members, as well as configuration variables, such as the angle and number of members, are defined as design variables and are parameterized. A sampling-based design sensitivity analysis based on latin hypercube sampling method is performed to filter the important design variables. The design optimization problem is formulated to minimize the total mass of the LMU under maximum von Mises stress and reaction force constraints.

A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method (초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석)

  • Suhan Kim;Wonjoo Lee;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.329-334
    • /
    • 2023
  • The classical multiscale finite element (FE2 ) method involves iterative calculations of micro-boundary value problems for representative volume elements at every integration point in macro scale, making it a computationally time and data storage space. To overcome this, we developed the data-driven multiscale analysis method based on the mean-field homogenization (MFH). Data-driven computational mechanics (DDCM) analysis is a model-free approach that directly utilizes strain-stress datasets. For performing multiscale analysis, we efficiently construct a strain-stress database for the microstructure of composite materials using mean-field homogenization and conduct data-driven computational mechanics simulations based on this database. In this paper, we apply the developed multiscale analysis framework to an example, confirming the results of data-driven computational mechanics simulations considering the microstructure of a hyperelastic composite material. Therefore, the application of data-driven computational mechanics approach in multiscale analysis can be applied to various materials and structures, opening up new possibilities for multiscale analysis research and applications.

Study on Application of Flexible Die to Sheet Metal Forming Process (가변금형의 박판 성형공정 적용 연구)

  • Heo, S.C.;Seo, Y.H.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.556-564
    • /
    • 2009
  • Flexible forming process for sheet material using reconfigurable die is introduced based on numerical simulation. In general, this flexible forming process using the reconfigurable die has been utilized for manufacturing of curved thick plates used for hull structures, architectural structures and so on. In this study, numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. The numerical simulation and experimental verification for sheet metal forming process using a flexible forming machine that is more suitable for thick plate forming process are carried out to confirm the appropriateness of the simulation process. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation for smoothing the forming surface which is discrete due to characteristics of the flexile die. In the flexible forming process for sheet metal, effect of a blank holder is also investigated according to blank holding methods. Formability in view of occurrence of dimples is compared with regard to the various punch sizes. Consequently, it is confirmed that the flexible forming for sheet material using urethane pad has enough capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming method.

A Study on the Stiffness of Tire (타이어의 강성계수에 관한 고찰)

  • 이상선;반재삼;김항우;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.886-889
    • /
    • 2002
  • Finite Element Method for 3-D static loaded passenger car tire on the rigid surface is performed for studying the stiffness of tire to compare with experimental data. The tire elements used for FEM are defined each component to allow an easy change for the design parameters. Also, a hyperelastic material which is composed of tread and sidewall has been used to consider a large deformation of rubber components. The orthotropic characters of rubber-cord composite materials are used as well. The air pressure, a vertical and a lateral load are applied step by step and iterated by Modified Newton method for geometric and boundary condition nonlinear simulation. This study shows nonlinear analysis method for tire and the bearing capacity of tire due to the external force.

  • PDF

A general convergence condition of the Newton-Raphson algorithm applied to compressible hyperelasticity

  • Peyraut, Francois;Feng, Zhi-Qiang;Labed, Nadia
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.121-136
    • /
    • 2005
  • This paper presents the implementation of the Blatz-Ko hyperelastic compressible model in a finite element program to deal with large deformation problems. We show analytically and numerically that the minimum number of increment steps in the Newton-Raphson algorithm depends on material properties and applied loads. We also show that this dependence is related to the orientation preservation principle. So we propose a convergence criteria based on the sign of eigenvalues of the deformation gradient matrix.

The Behavior and Characterization Analysis of Elastomer Seal for High Speed Pneumatic Cylinder (고속 공기압 실린더의 거동 및 특성 해석 기술 연구)

  • Hur, Shin;Woo, Chang-Su;Kim, Dong-Soo;Kim, Young-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1215-1220
    • /
    • 2008
  • The aim of this paper is to perform a finite element analysis that will have the ability to predict the seal performance characteristics, such as deformation, contact load and friction and also is to provide a means of potential seal designs, which can reduce the time and cost of designing the performance of the seal. The material property tests of elastomer seal are performed to obtain the hyperelastic properties and The Mooney-Rivlin constants are determined from these test results. A 2D modelling of the seal cross section is performed to simulate the contact behavior between the seal on the piston and the cylinder bore under operation conditions. The deformation behavior, contact load and friction of an elastomer seal is analyzed by a finite element method which performs three analytic phases of interference fit, the variations of pneumatic pressure and piston movement under the operational conditions.

  • PDF