• 제목/요약/키워드: Hyper-Connected Network

검색결과 59건 처리시간 0.024초

초연결사회의 정치경제학적 기원과 성격 (The Origin and Nature of the Hyper-Connected Society in the light of Political Economy)

  • 박지웅
    • 사회경제평론
    • /
    • 제31권3호
    • /
    • pp.271-305
    • /
    • 2018
  • 오늘날 우리는 초연결사회에 살고 있다. 초연결사회란 초연결성(hyper-connectivity)으로 연결된 네트워크 사회(network society)를 말한다. 이러한 초연결성의 기술적 토대가 오늘날의 제4차 산업혁명임을 잘 알고 있다. 이 글에서는 산업혁명의 단계적 발전의 패턴을 밝힘으로써 초연결사회의 기원을발견하고자 한다. 산업혁명을 포함한 기술혁명의 변화의 패턴은 다음과 같이 지극히 단순하게 요약할 수 있다. (1) 기술혁명${\rightarrow}$네트워크혁명. (2) 네트워크혁명${\rightarrow}$사회적 네트워크의 변화 (3) 물질의 혁명${\rightarrow}$정신의 혁명. 산업혁명의 단계적 발전의패턴은 다음과 같다. 따라서 네트워크 혁명의 차원에서 본다면 초연결사회의 기원은 1840년 이후 미국에서 일어난 철도혁명(2차 산업혁명)에서 찾아볼 수 있다.

Novel Packet Switching for Green IP Networks

  • Jo, Seng-Kyoun;Kim, Young-Min;Lee, Hyun-Woo;Kangasharju, Jussi;Mulhauser, Max
    • ETRI Journal
    • /
    • 제39권2호
    • /
    • pp.275-283
    • /
    • 2017
  • A green technology for reducing energy consumption has become a critical factor in ICT industries. However, for the telecommunications sector in particular, most network elements are not usually optimized for power efficiency. Here, we propose a novel energy-efficient packet switching method for use in an IP network for reducing unnecessary energy consumption. As a green networking approach, we first classify the network nodes into either header or member nodes. The member nodes then put the routing-related module at layer 3 to sleep under the assumption that the layer in the OSI model can operate independently. The entire set of network nodes is then partitioned into clusters consisting of one header node and multiple member nodes. Then, only the header node in a cluster conducts IP routing and its member nodes conduct packet switching using a specially designed identifier, a tag. To investigate the impact of the proposed scheme, we conducted a number of simulations using well-known real network topologies and achieved a more energy- efficient performance than that achieved in previous studies.

FDVRRP: Router implementation for fast detection and high availability in network failure cases

  • Lee, Changsik;Kim, Suncheul;Ryu, Hoyong
    • ETRI Journal
    • /
    • 제41권4호
    • /
    • pp.473-482
    • /
    • 2019
  • High availability and reliability have been considered promising requirements for the support of seamless network services such as real-time video streaming, gaming, and virtual and augmented reality. Increased availability can be achieved within a local area network with the use of the virtual router redundancy protocol that utilizes backup routers to provide a backup path in the case of a master router failure. However, the network may still lose a large number of packets during a failover owing to a late failure detections and lazy responses. To achieve an efficient failover, we propose the implementation of fast detection with virtual router redundancy protocol (FDVRRP) in which the backup router quickly detects a link failure and immediately serves as the master router. We implemented the FDVRRP using open neutralized network operating system (OpenN2OS), which is an open-source-based network operating system. Based on the failover performance test of OpenN2OS, we verified that the FDVRRP exhibits a very fast failure detection and a failover with low-overhead packets.

Client-Side Deduplication to Enhance Security and Reduce Communication Costs

  • Kim, Keonwoo;Youn, Taek-Young;Jho, Nam-Su;Chang, Ku-Young
    • ETRI Journal
    • /
    • 제39권1호
    • /
    • pp.116-123
    • /
    • 2017
  • Message-locked encryption (MLE) is a widespread cryptographic primitive that enables the deduplication of encrypted data stored within the cloud. Practical client-side contributions of MLE, however, are vulnerable to a poison attack, and server-side MLE schemes require large bandwidth consumption. In this paper, we propose a new client-side secure deduplication method that prevents a poison attack, reduces the amount of traffic to be transmitted over a network, and requires fewer cryptographic operations to execute the protocol. The proposed primitive was analyzed in terms of security, communication costs, and computational requirements. We also compared our proposal with existing MLE schemes.

Performance analysis of large-scale MIMO system for wireless backhaul network

  • Kim, Seokki;Baek, Seungkwon
    • ETRI Journal
    • /
    • 제40권5호
    • /
    • pp.582-591
    • /
    • 2018
  • In this paper, we present a performance analysis of large-scale multi-input multi-output (MIMO) systems for wireless backhaul networks. We focus on fully connected N nodes in a wireless meshed and multi-hop network topology. We also consider a large number of antennas at both the receiver and transmitter. We investigate the transmission schemes to support fully connected N nodes for half-duplex and full-duplex transmission, analyze the achievable ergodic sum rate among N nodes, and propose a closed-form expression of the achievable ergodic sum rate for each scheme. Furthermore, we present numerical evaluation results and compare the resuts with closed-form expressions.

Adaptive Standby Mode Scheduling Method Based on Analysis of Activation Pattern for Improving User Experience of Low-Power Set-Top Boxes

  • Park, Hyunho;Kim, Junghak;Jung, Eui-Suk;Lee, Hyunwoo;Lee, Yong-Tae
    • ETRI Journal
    • /
    • 제38권5호
    • /
    • pp.885-895
    • /
    • 2016
  • The lowest power mode (passive-standby mode) was proposed for reducing the power consumption of set-top boxes in a standby state when not receiving content. However, low-power set-top boxes equipped with the lowest power mode have been rarely commercialized because of their low-quality user experience. In the lowest power mode, they deactivates almost all of operational modules and processes, and thus require dozens of seconds for activation latency (that is, the latency for activating all modules of the set-top boxes in a standby state). They are not even updated in a standby state because they deactivate their network interfaces in a standby state. This paper proposes an adaptive standby mode scheduling method for improving the user experience of such boxes. Set-top boxes using the proposed method can analyze the activation pattern and find the frequently used time period (that is, when the set-top boxes are frequently activated). They prepare for their activation during this frequently used time period, thereby reducing the activation latency and enabling their update in a standby state.

Performance analysis of local exit for distributed deep neural networks over cloud and edge computing

  • Lee, Changsik;Hong, Seungwoo;Hong, Sungback;Kim, Taeyeon
    • ETRI Journal
    • /
    • 제42권5호
    • /
    • pp.658-668
    • /
    • 2020
  • In edge computing, most procedures, including data collection, data processing, and service provision, are handled at edge nodes and not in the central cloud. This decreases the processing burden on the central cloud, enabling fast responses to end-device service requests in addition to reducing bandwidth consumption. However, edge nodes have restricted computing, storage, and energy resources to support computation-intensive tasks such as processing deep neural network (DNN) inference. In this study, we analyze the effect of models with single and multiple local exits on DNN inference in an edge-computing environment. Our test results show that a single-exit model performs better with respect to the number of local exited samples, inference accuracy, and inference latency than a multi-exit model at all exit points. These results signify that higher accuracy can be achieved with less computation when a single-exit model is adopted. In edge computing infrastructure, it is therefore more efficient to adopt a DNN model with only one or a few exit points to provide a fast and reliable inference service.

유‧무인 복합을 위한 AI와 네트워크 동향 (AI and Network Trends for Manned-Unmanned Teaming)

  • 최진규;이용태;강동우;이종국;박혜숙
    • 전자통신동향분석
    • /
    • 제39권4호
    • /
    • pp.21-31
    • /
    • 2024
  • Major global powers are investing heavily in artificial intelligence (AI) and hyper-connected networks, demonstrating their crucial role in future warfare. To advance and utilize AI in national defense, it is essential to have policy support at the governmental or national level. This includes establishing a research and development infrastructure, creating a common development environment, and fostering AI expertise through education and training programs. To achieve advancements in hyper-connected networks, it is essential to establish a foundation for a robust and resilient infrastructure by comprehensively building integrated satellite, aerial, and ground networks, along with developing 5G & edge computing and low-orbit satellite communication technologies. This multi-faceted approach will ensure the successful integration of AI and hyper-connected networks, strengthening national defense and positioning nations at the forefront of technological advancements in warfare.

광액세스 고속화 및 가상화 기술 동향 (Recent Trends in High-Speed and Virtualized Optical Access Technologies)

  • 정환석;나용욱;박찬성;이준기
    • 전자통신동향분석
    • /
    • 제35권5호
    • /
    • pp.57-68
    • /
    • 2020
  • This paper reviews the recent trends in optical access technologies and their future directions. As the number of hyper-connected, ultra-low-latency, and hyper-realistic services increases, the wireless path has become shorter and the optical access network has become deeply penetrated into the end user. The optical access network continues to evolve through endless innovation via high-speed, ultra-low-latency, and abstraction/virtualization technologies.

Agile Management and Interoperability Testing of SDN/NFV-Enriched 5G Core Networks

  • Choi, Taesang;Kim, TaeYeon;Tavernier, Wouter;Korvala, Aki;Pajunpaa, Jussi
    • ETRI Journal
    • /
    • 제40권1호
    • /
    • pp.72-88
    • /
    • 2018
  • In the fifth generation (5G) era, the radio internet protocol capacity is expected to reach 20 Gb/s per sector, and ultralarge content traffic will travel across a faster wireless/wireline access network and packet core network. Moreover, the massive and mission-critical Internet of Things is the main differentiator of 5G services. These types of real-time and large-bandwidth-consuming services require a radio latency of less than 1 ms and an end-to-end latency of less than a few milliseconds. By distributing 5G core nodes closer to cell sites, the backhaul traffic volume and latency can be significantly reduced by having mobile devices download content immediately from a closer content server. In this paper, we propose a novel solution based on software-defined network and network function virtualization technologies in order to achieve agile management of 5G core network functionalities with a proof-of-concept implementation targeted for the PyeongChang Winter Olympics and describe the results of interoperability testing experiences between two core networks.