• Title/Summary/Keyword: Hydroxybenzoic acid

Search Result 138, Processing Time 0.011 seconds

Identification of 3-methoxy-4-hydroxybenzoic acid and 4-hydroxybenzoic acid with Antioxidative and Antimicrobial Activity from arachis hypogaea Shell (땅콩껍질에서 항균 및 항산화활성이 있는 3-methoxy-4-hydroxybenzoic acid와 4-hydroxybenzoic acid의 동정)

  • 위지향;박근형
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.464-468
    • /
    • 2000
  • The methanol extract of Arachis hypogaea shell showed antioxidative and antimicrobial activity. The methanol extract was successively purified by solvent fractionation, silica gel adsorption column chromatography, Sephadex LH-20 column chromatography and octadecylsilane column chromatography. The purified active substances were isolated by high performance liquid chromatography, and were identified as 3-methoxy-4-hydroxybenzoic acid and 4-hydroxybenzoic acid by LC-MS and GC-MS. The amount of 3-methoxy-4-hydroxybenzoic acid and 4-hydroxybenzoic acid were 3.8mg and 9.8 mg per kg of shell, respectively.

  • PDF

Sensory Characteristics of Functional Muffin Prepared with Ferulic acid and p-Hydroxybenzoic Acid (Ferulic acid와 p-hydroxybenzoic acid가 첨가된 기능성 머핀의 관능적 특성)

  • 전소윤;정소혜;김효정;김미라
    • Korean journal of food and cookery science
    • /
    • v.18 no.5
    • /
    • pp.476-481
    • /
    • 2002
  • The Physical and sensory characteristics of muffins prepared with flavonoids such as ferulic acid and p-hydroxybenzoic acid were evaluated for the development of functional foods using these flavonoids. The solubilities of ferulic acid and p-hydroxybenzoic acid were over 1% in water and the solutions showed a good thermal stability. However, 1% ferulic acid and p-hydroxybenzoic acid solution showed a color change during heating. The volume and maximum height of the control muffin were the greatest among the muffin groups. The volume of the muffins decreased with the increase of flavonoid concentration. The volumes of muffins with p-hydroxybenzoic acid were smaller than those of muffins with ferulic acid. The L, a and b values on crust and crumb of the muffin groups were not significantly different. The chemical flavor, bitterness and after taste of the muffins prepared with ferulic acid were stronger than those of the control muffins. Savory flavor and sweetness of the muffins with ferulic acid were weaker than those of the control muffins. The muffins with p-hydroxybenzoic acid were not significantly different from the control muffins in the appearance, flavor, taste, texture and overall acceptability. These results demonstrated that p-hydroxybenzoic acid may be useful as an additive to muffin.

Effect of Commercial Plant Cell Wall Degrading Enzymes on Extraction of p-Hydroxybenzoic Acid from Carrot Alcohol Insoluble Residue (AIR) and Cellulose Fraction (당근의 알콜불용성 잔사와 셀룰로오스 분획의, p-Hydroxybenzoic Acid 추출에 미치는 시판 식물세포벽분해효소의 영향)

  • Kang, Yoon-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1633-1637
    • /
    • 2005
  • Five different plant cell wall degrading enzymes were tested for their ability to release p -hydroxybenzoic acid from carrot alcohol insoluble residue (AIR) and cellulose fraction. Phenolics of AIR from cell wall materi민 (CWM) in carrot were found to consist primarily of p-hydroxybenzoic acid (1,977 $\mu$g/g AIR) with minor contribution from vanillin (55.9 $\mu$g/g AIR), ferulic acid (13.6 $\mu$g/g AIR) and p-hydroxybenzaldehyde (10.6 $\mu$g/g AIR). The contents of ferulic acid in Driselase, Cellulase, Macerozyme R-200, Macerozyme R-10 and Sumyzyme MC were 2,319, 2,060, 391, 95.2, 34.1 $\mu$g/g, respectively. Incubation of Driselase with AIR released only 2.8$\%$ of the total 4 M NaOH extractable p-hydroxybenzoic acid. These results indicate that commercial five plant cell wall dograding enzymes can not release P-hydroxybenzoic acid from carrot AIR and cellulose fraction.

Catabolism of 4-Hydroxybenzoic Acid by Pseudomonas sp. DJ-12

  • Tim;Chae, Jong-Chan;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.123-127
    • /
    • 1999
  • A Pseudomonas sp. strain DJ-12 isolated by 4-cholrobiphenyl enrichment culture technique is capable of utilizing 4-hydroxybenzoic acid as a sole source of carbon and energy. The bacterium catabolized 4-hydroxybenzoic acid through the intermediate formation of protocatechuic acid, which was further metabolized. The cell free extracts of pseudomonas sp. DJ-12, grown on 4-hydroxybenzoic acid showed higher activities of 4-hydroxyenzoate 3-hydroxylase and protocatechuate 4,5-dioxygenase, but the activity of catechnol 2,3-dioxygenase was lower. The results suggest that 4-hydroxybenzoic acid is catabolized via protocatechuic acid rather than catechol or gentisic acid in this bacterium and that the protocatechuic acid formed was metabolized through a metacleavage pathway by protocatechuate 4,5-dioxygenase.

  • PDF

Microbial Degradation of Monohydroxybenzoic Acids

  • Kim, Chi-Kyung;Tim
    • Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.53-61
    • /
    • 2000
  • Hydroxybenzoic acids are the most important intermediates in the degradative pathways of various aromatic compounds. Microorganisms catabolize aromatic compounds by converting them to hydroxylated intermediates and then cleave the benzene nucleus with ring dioxygenases. Hydroxylation of the benzene nucleus of an aromatic compound is an essential step for the initiation and subsequent disintegration of the benzene ring. The incorporation of two hydroxyl groups is essential for the labilization of the benzene nucleus. Monohydroxybenzoic acids such as 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, and 4-hydrosybenzoic acid, opr pyrocattechuic acid that are susceptible for subsequent oxygenative cleavage of the benzene ring. These terminal aromatic intermediates are further degraded to cellular components through ortho-and/or meta-cleavage pathways and finally lead to the formation of constituents of the TCA cycle. Many groups of microorganisms have been isolated as degraders of hydroxybenzoic acids with diverse drgradative routes and specific enzymes involved in their metabolic pahtway. Various microorganisms carry out unusual non-oxidative decarboxylation of aromatic acids and convert them to respective phenols which have been documented. Futher, Pseudomonas and Bacillus spp. are the most ubiquitous microorganisms, being the principal components of microflora of most soil and water enviroments.

  • PDF

Biosynthesis of Two Hydroxybenzoic Acid-Amine Conjugates in Engineered Escherichia coli

  • Kim, Song-Yi;Kim, Han;Kim, Bong-Gyu;Ahn, Joong-Hoonc
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1636-1643
    • /
    • 2019
  • Two hydroxybenzoyl amines, 4-hydroxybenzoyl tyramine (4-HBT) and N-2-hydroxybenzoyl tryptamine (2-HBT), were synthesized using Escherichia coli. While 4-HBT was reported to demonstrate anti-atherosclerotic activity, 2-HBT showed anticonvulsant and antinociceptive activities. We introduced genes chorismate pyruvate-lyase (ubiC), tyrosine decarboxylase (TyDC), isochorismate synthase (entC), isochorismate pyruvate lyase (pchB), and tryptophan decarboxylase (TDC) for each substrate, 4-hydroxybenzoic acid (4-HBA), tyramine, 2-hydroxybenzoic acid (2-HBA), and tryptamine, respectively, in E. coli. Genes for CoA ligase (hbad) and amide formation (CaSHT and OsHCT) were also introduced to form hydroxybenzoic acid and amine conjugates. In addition, we engineered E. coli to provide increased substrates. These approaches led to the yield of 259.3 mg/l 4-HBT and 227.2 mg/l 2-HBT and could be applied to synthesize diverse bioactive hydroxybenzoyl amine conjugates.

P-hydroxybenzoic acid positively affect the Fusarium oxysporum to stimulate root rot in Panax notoginseng

  • Jing Zhao;Zhandi Wang;Rong Jiao;Qionglian Wan;Lianchun Wang;Liangxing Li;Yali Yang;Shahzad Munir
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.229-235
    • /
    • 2024
  • Background: Plant health is directly related to the change in native microbial diversity and changes in soil health have been implicated as one of the main cause of root rot. However, scarce information is present regarding allelopathic relationship of Panax notoginseng root exudates and pathogenic fungi Fusarium oxysporum in a continuous cropping system. Methods: We analyzed P. notoginseng root exudate in the planting soil for three successive years to determine phenolic acid concentration using GC-MS and HPLC followed by effect on the microbial community assembly. Antioxidant enzymes were checked in the roots to confirm possible resistance in P. notoginseng. Results: Total 29 allelochemicals in the planting soil extract was found with highest concentration (10.54 %) of p-hydroxybenzoic acid. The HPLC showing a year-by-year decrease in p-hydroxybenzoic acid content in soil of different planting years, and an increase in population of F. oxysporum. Moreover, community analysis displayed negative correlation with 2.22 mmol. L-1 of p-hydroxybenzoic acid correspond to an 18.1 % population of F. oxysporum. Furthermore, in vitro plate assay indicates that medium dose of p-hydroxybenzoic acid (2.5-5 mmol. L-1) can stimulate the growth of F. oxysporum colonies and the production of macroconidia, as well as cell wall-degrading enzymes. We found that 2-3 mmol. L-1 of p-hydroxybenzoic acid significantly increased the population of F. oxysporum. Conclusion: In conclusion, our study suggested that p-hydroxybenzoic acid have negative effect on the root system and modified the rhizosphere microbiome so that the host plant became more susceptible to root rot disease.

Ingredient Contents of Nipa Palm(Nypa fruticans Wurmb.) according to Different Extraction Methods (추출방법에 따른 니파팜의 성분 함량)

  • Kim, Myong-Ki
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.104-110
    • /
    • 2021
  • This study was conducted to confirm the change in the contents of the ingredients according to the extraction method of nipa palm. The contents were analyzed by extraction according to the ethanol ratio, extraction time, and extraction temperature. The contents of polyphenols and flavonoids according to the ratio of the extraction solvent were the highest at 36.91 and 27.62 mg/g, respectively, when extracted with 50% ethanol. Polyphenols and flavonoids according to extraction temperature and extraction time showed the highest content of 40.83 and 37.63 mg/g, respectively, when extracted for 6 hours at 60℃. The contents of the major component of nipa palm according to the ethanol ratio were 2.08 mg/g in 70% ethanol for 5-O-caffeoylshikimic acid, 0.10 mg/g for 4-hydroxybenzoic acid in 30% ethanol, and 0.12 mg/g for 3,4- hydroxybenzoic acid in 50% ethanol. It is expected that it can be used as basic research data when developing natural materials such as food and cosmetics through the change in the contents of the ingredients contained in nipa palm according to the extraction methods.

Characterization and distribution of phenolics in carrot cell walls

  • Kang, Yoon-Han
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.134.1-134
    • /
    • 2003
  • The purpose of this study was to investigate the release of p-hydroxybenzoic acid and other compounds from cell wall materials(CWM) and their cellulose fraction from carrot with chemical and enzymatic hydrolysis. To investigate this effect on cell wall chemistry of carrot, alcohol insoluble residue(AIR) of CWM were prepared and were extracted sequentially with water, imidazole, CDTA(-1, -2), Na$_2$CO$_3$(-1, -2), KOH(0.5, 1.0 and 4M), to leave a residue. These were analysed for their carbohydrate and phenolic acids composition. Arabinose and galactose were the main noncellulosic sugars. Phenolics esterified to cell walls in carrot were found to consist primarily of p-hydroxybenzoic acid with minor contribution from vanillin, ferulic acid and p-hydroxybenzaldehyde. p-Hydroxybenzoic acid was quite strongly bound to the cell wall. The contents of p-hydroxybenzoic acid in 0.5M KOH, Na$_2$CO$_3$-2, IM KOH, and ${\alpha}$-cellulose were 2,097, 1,360, 1,140, and 717 $\mu\textrm{g}$/g AIR from CWM, respectively. Alkali labile unknown aromatic compound(C$\sub$7/H$\sub$10/O$_2$) was found in ${\alpha}$ -cellulose hydrolyzate digested with driselase and cellulase. This compound was also found in hydrolyzate of 2 M trifluoroacetic acid at 120$^{\circ}C$ for 2 hours. Driselase treatment solubilized only 46.6 $\mu\textrm{g}$/g of the p-hydroxybenzoic acid from carrot AIR. These results indicate that p-hydroxybenzoic acid was associated with neutral polysaccharides, long chain galactose and branched arabinan from graded alcohol precipitation.

  • PDF

Isolation and Identification of 3-Methoxy-4-hydroxybenzoic acid and 3-Methoxy-4-hydroxycinnamic acid from Hot Water Extracts of Hovenia dulcis Thunb and Confirmation of Their Antioxidative and Antimicrobial Activity (헛개나무 열수추출물로부터 항산화 및 항미생물 활성을 갖는 3-methoxy-4-hydroxybenzoic acid 와 3-methyoxy-4-hydroxycinnamic acid의 분리 및 동정)

  • Cho, Jeong-Yong;Moon, Jae-Hak;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1403-1408
    • /
    • 2000
  • The methanol soluble fraction of the hot water extracts from Hovenia dulcis Thunb showed antioxidative and antimicrobial activity. The methanol fraction was successively purified with solvent fractionation, silica gel adsorption column chromatography, Sephadex LH-20 column chromatography, and octadecylsilane column chromatography. The purified active substances were isolated by high performance liquid chromatography. The isolated substances were identified as 3-methoxy-4-hydroxybenzoic acid (vanillic acid) and 3-methoxy- 4-hydroxycinnamic acid (ferulic acid) by LC-MS and GC-MS. Vanillic acid and ferulic acid showed antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria and yeast. The DPPH-radical scavenging activity of ferulic acid appeared more active than that of vanillic acid. DPPH-radical scavenging concentration of ferulic acid and vanillic acid were $14\;{\mu}g/mL\;(SC_{50})$, $100\;{\mu}g/mL\;(SC_{10})$, respectively.

  • PDF