• Title/Summary/Keyword: Hydrotesting

Search Result 3, Processing Time 0.02 seconds

Effects of Ambient Temperature Change on the Internal Pressure Change of Multi-Layered Subsea Pipeline (주위 온도변화가 다층구조 해저 파이프라인 내부 압력변화에 미치는 영향)

  • Yang, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.772-779
    • /
    • 2019
  • The subsea pipeline has received considerable attention as a high-value-added industry linked to the energy and steel industries including natural resource development. The design and installation of the subsea pipeline require a variety of key technologies to carry out the project. In particular, a thorough pre-verification process through pre-commissioning is essential for the safe operation of the subsea pipeline. The hydrotesting stage in the pre-commissioning process of the subsea pipeline is known to be affected significantly by the ambient temperature change; however, there is a little study based on the theoretical and numerical approach. In this study, the method of predicting the internal temperature change using the transient heat transfer method for the stage of hydrotesting during the pre-commissioning process of the subsea pipeline and the prediction method of the pressure variation in the pipeline using it were proposed. The predicted results were compared with field test results and its effectiveness was verified. The proposed analysis procedure is expected to contribute to the productivity improvement of the subsea pipeline installation project by enabling the prediction of pressure variation through pipeline heat transfer simulation from the initial design stage of the subsea pipeline installation project.

Study on the Change of Relative Humidity in Subsea Pipeline According to Drying Method (건조 공법에 따른 해저 파이프라인 내부 상대습도 변화 특성 연구)

  • Yang, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.406-413
    • /
    • 2022
  • The subsea pipeline pre-commissioning stage consists of the following processes: Flooding, Venting, Hydrotesting, Dewatering, Drying, and N2 Purging. Among these processes, drying and nitrogen purging processes are stipulated to reduce and maintain the relative humidity below dew point to prevent the generation of hydrate and the risk of gas explosion in the pipeline during operation. The purpose of this study is to develop an analysis method for the air drying and nitrogen purging process during pre-commissioning of the subsea pipeline, and to evaluate the applicability of the analysis method through comparison with on-site measurement results. An analysis method using Computational Fluid Dynamics (CFD) was introduced and applied as a method for evaluating the relative humidity inside a subsea pipeline, and it was confirmed that analysis results were in good agreement with the on-site measurement results for the air drying and nitrogen purging process of the offshore pipeline. If the developed air drying and nitrogen purging analysis method are used as pre-engineering tools for pre-commissioning of subsea pipelines in the future, it is expected to have a significant impact on the improvement of work productivity.

Settlement Characteristics of a Large-Scale Foundation over a Sabkha Layer Consisting of Carbonate Sand (Sabkha층 탄산질 모래의 침하특성 및 상부기초의 거동)

  • Kim, Seok-Ju;Han, Heui-Soo
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.247-256
    • /
    • 2013
  • The carbonate sands of the Sabkha layer in the Middle East have very low shear strength. Therefore, instant settlement and time-dependent secondary settlement occur when inner voids are exposed, as in the case of particle crushing. We analyzed settlement of the Sabkha layer under a large-scale foundation by hydrotesting, and compared the field test results with the results of laboratory tests. With ongoing particle crushing, we observed the following stress-strain behaviors: strain-hardening (Sabkha GL-1.5 m), strain-perfect (Sabkha GL-7.0 m), and strain-softening (Sabkha GL-7.5 m). General shear failure occurred most frequently in dense sand and firm ground. Although the stress-strain behavior of Sabkha layer carbonate sand that of strain-softening, the particle crushing strength was low compared with the strain-hardening and strain-perfect behaviors. The stress-strain behaviors differ between carbonate sand and quartz sand. If the relative density of quartz sand is increased, the shear strength is also increased. Continuous secondary compression settlement occurred during the hydrotests, after the dissipation of porewater pressure. Particle crushing strength is relatively low in the Sabkha layer and its stress-strain behavior is strain-softening or strain-perfect. The particle crushing effect is dominant factor affecting foundation settlement in the Sabkha layer.