• Title/Summary/Keyword: Hydrostatic water permeability test

Search Result 3, Processing Time 0.016 seconds

Hydrostatic Pressure Resistance Performance Testing of Cement Mixed Siliceous Powder Waterproofing Coationgs (규산질계 분말형 도포방수재의 내투수성 성능평가 연구)

  • Park, So-Young;Kwon, Si-Won;Kim, Soo-Yeon;Kim, Byong-il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.31-32
    • /
    • 2018
  • Lately, cement mixed siliceous powder waterproofing coating has been used as a waterproofing material in the wet environment condition of an underground concrete structure. Underground is exposed to environmental influences such as pressure of ground water, pressure of soil. However, the quality standard for pressure (water pressure, earth pressure) is not specified in the specification of the cement mixed siliceous powder waterproofing coating. Therefore, in this study, the permeability test was carried out based on the assumption that the durability should be verified in consideration of the environmental aspects of the material in actual field. As a result of the test, the permeability was generated from the inorganic single type material, but it was caused by the sealing failure and the test error, and the permeability was not generated in most of the materials. The results of this study will be analyzed by reviewing the physical properties of the material, and the research direction will be resumed.

  • PDF

Self-healing Performance Evaluation of Cement Mortar with Inorganic Additives Based on Clinker Binder (클링커 바인더 기반 무기계 혼합재를 활용한 시멘트 모르타르의 치유성능 평가)

  • Jung-Il, Suh;Yoon-Suk, Choi;Byung-Sun, Park;Kwang-Myong, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.561-568
    • /
    • 2022
  • In this study, the mechanical properties and self-healing performance of cement mortar containing clinker binder, calcium sulfoaluminate(CSA), and sodium sulfate(Na2SO4) were evaluated. The mechanical properties of cement mortar were investigated by measuring compressive strength and flexural strength, and the healing performance was evaluated through hydrostatic water permeability test and gas diffusion test. In addition, the healing products precipitated in the cracks were visually observed through an optical microscope and a scanning electron microscope(SEM). As a result, the incorporation of the clinker binder-based inorganic additives improved the initial and 28-day strength by about 20 %. Depending on the healing performance evaluation method, there was a difference in the healing rate, and the healing rate showed a tendency to be underestimated. Nevertheless, CaCO3 was precipitated as the main healing product inside the 0.3 mm crack when the inorganic additives were mixed with cement mortar, improving the self-healing performance.

The Effect of Crack Self-Healing Hybrid Capsules Composition Ratio on the Healing Properties of Cement Composites (균열 자기치유 하이브리드캡슐 조성비에 따른 시멘트 복합재료의 치유특성에 미치는 영향)

  • Choi, Yun-Wang;Nam, Eun-Joon;Park, Jun-Ho;Oh, Sung-Rok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.335-342
    • /
    • 2022
  • In this study, self-healing hybrid capsules were prepared by mixing self-healing solid capsules and self-healing microcapsules using inorganic materials as core materials. Self-healing hybrid capsules were mixed with 3 % according to the composition ratio of 3:7, 5:5, and 7:3 based on the mass of the cement to prepare a self-healing cement composite material. The healing properties of crack self-healing hybrid capsules were evaluated through hydrostatic water permeability test and surface crack monitoring. It was found that the self-healing hybrid capsules prepared by mixing the composition ratio of the self-healing solid capsules and the self-healing microcapsules at 7:3 has a great effect on improving the crack self-healing performance.