• Title/Summary/Keyword: Hydrostatic

Search Result 901, Processing Time 0.04 seconds

Analysis of Characteristics of Hydrostatic Bearing in Hydraulic Cylinder (유압 실린더 내의 정압 베어링 특성에 관한 연구)

  • 백승희;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.12a
    • /
    • pp.63-69
    • /
    • 1993
  • In this paper the characteristics of Hydrostatic Bearing of piston of cylinder are investigated . The dynamic characteristic equations of piston considering both parallel and rotational motion and time dependent modified Reynolds Equation are analyzed and the dynamic pressure distribution of oil film is numerically calculated by perturbation method and finite difference method. and the atatic analysis is carried out. so, the influence of design parameter of piston on the characteristic of bearing is analyzed.

  • PDF

The Characteristics of Hot Hydrostatic Extrusion of AZ Magnesium Alloy (AZ계 마그네슘 합금의 열간 정수압 압출특성 연구)

  • Yoon, D.J.;You, B.S.;Lim, S.J.;Kim, E.Z.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.62-65
    • /
    • 2008
  • Extrusion characteristics of Mg alloys were studied experimentally. The Al-Zn-Mg alloys, AZ31, AZ6l, AZ80, and AZ91 were extruded with hot hydrostatic extrusion process. The hydrostatic process was efficient to reduce surface friction and extend steady state region in extrusion which made it more convenient to examine deformation behavior of the alloys avoiding the disturbance caused by temporary contact state between billet and die, and billet and container. High pressure was cooperative to expand forming limit of the alloys which were applied on the billet during the extrusion process. Extrusion limits were traced in temperature and extrusion speed domain with changing composition of the alloying elements. Effects of process parameters on extrusion load and microstructure evolution were investigated also.

  • PDF

A Study on Performance Analysis of Cryogenic Hydrostatic Journal Bearings : the Effects of Turbulent Flow, Pressure Drop and Variable Liquid Properties (극저온 정압 저널베어링의 성능해석에 관한 연구 : 난류유동, 압력강하, 가변 밀도 및 점도의 영향)

  • 김성기;강지훈;김경웅
    • Tribology and Lubricants
    • /
    • v.19 no.3
    • /
    • pp.139-145
    • /
    • 2003
  • In this paper, static characteristics of a cryogenic hydrostatic journal bearing which has 2-rows staggered recesses are numerically analyzed. The regime of operation of this bearing is fully turbulent with large fluid inertia effects. The turbulent lubrication equation is solved under the assumption that turbulence parameters are decided by the Reynolds numbers. Pressure drop caused by inertia effect at the recess edge is considered in this analysis. Also density and viscosity of working fluid are considered as function of only pressure. Numerical results for a cryogenic Hydrostatic journal bearing show pressure distribution, load capacity, flow rate, and recess pressure. The effects of turbulent flow, pressure drop and variable liquid properties are discussed.

Micro Forming with Hydrostatic Pressure -Hydro-Mechanical Role Punching- (정수압을 이용한 미세 성형 -Hydro-Mechanical Hole Punching-)

  • 박훈재;김승수;최태훈;김응주;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.386-390
    • /
    • 2003
  • As a trial of application of hydrostatic pressure in micro fomring, burr-free punching has been conducted by means of hydro-mechanical procedure. Even though it is in beginning stage, result of the hydro-mechanical punching is promising. Hydrostatic pressure helps delay fracture initiation and makes it possible to get clean shearing surface. Without any burr on both side of sheet, smooth holes are archived as intended. To verify the significance of hydro-mechanical punching, conventional punching is performed under similar conditions and relatively larger portion of fracture surface is detected in the punching hole. Despite the quality of sidewall is not good enough, it might be possible to make the hole shaped upright, reduce the roll-over radius and minimize the fracture surface by optimizing process parameters.

  • PDF

Derivation of constitutive equations of loose metal powder to predict plastic deformation in compaction (자유분말금속 압축시 소성변형예측을 위한 구성방정식의 유도)

  • Kim, Jin-Young;Park, Jong-jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.444-450
    • /
    • 1998
  • In the present investigation, it is attempted to derive a yield function and associated flow rules of loose metal powders to predict plastic deformation and density change during compaction. The loose metal powders yield by shear stress as well as hydrostatic stress and the yield strength is much smaller in tension than compression. Therefore, a yield function for the powders is expressed as a shifted ellipse toward the negative direction in the hydrostatic stress axis in the space defined by the two stresses. Each of parameters A, B and .delta. used in the yield function is expressed as a function of relative density and it is determined by uniaxial strain and hydrostatic compressions using Cu powder. Flow rules obtained by imposing the normality rule to the yield function are applied to the analyses of unidirectional, bidirectional and hydrostatic compressions, resulting in an excellent agreement with experiments. The yield function is further examined by checking volume changes in plane stain, uniaxial strain and shear deformations.

Analysis of Positioning Error Factors in the Hydrostatic Tables (유정압테이블의 위치결정오차요인 분석)

  • Oh Y.J.;Park C.H.;Lee D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.773-776
    • /
    • 2005
  • In this paper, For improving the positioning accuracy of hydrostatic table, relationship between temperature of atmosphere and thermal characteristics of hydrostatic table is analyzed, and influence of thermal characteristics on positioning accuracy is also analyzed experimentally. From the experimental results, it is confirmed that positioning error and repeatability is $0.21{\mu}m\;and\;0.18{\mu}m$ when the laser scale which has $0.01{\mu}m$ of resolution is used as feed-back unit. and also confirmed that thermal deformation of scale and supporter, which occurs by the temperature variation of atmosphere, works as limit of repeatability in long time operation.

  • PDF

A Study on the Hydrostatic Extrusion Characteristics for Al-7.5%Mg nano-grained bulk material (Al-7.5%Mg 나노 벌크소재의 정수압 압출특성에 관한 연구)

  • Yoon C.Y.;Rhee K.Y.;Lee S.M.;Park H.J.;Park J.H.;KIM Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1497-1500
    • /
    • 2005
  • This paper accomplished the basic research using the hydrostatic extrusion to make the nano-grained bulk material. It was carried out a hot hydrostatic extrusion using the hipped bulk Al-7.5%Mg that was taken from University of California, Davis. in order to investigate the effect of the hot isostatic extrusion. The tensile tests for the hipped bulk Al-7.5%Mg and the extruded one was executed and the results was compared.

  • PDF

Development of Friction Torque Measurement Device for Spherical Hydrostatic Bearing (구면 정압베어링의 마찰토크 측정장치 개발)

  • 함영복;최영호;박경민;윤소남;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.181-186
    • /
    • 2002
  • Lately, as going on increasing in the demand of high power density(power/weight), it is necessary for hydraulic axial piston pump/motor to operate more high pressure and speed. But in these condition, there are some trouble like as friction loss. To reduce this friction loss, hydrostatic bearing is used far axial piston pump/motor frequently. In general, it is difficult to measure accurate friction torque of spherical hydrostatic bearing in the use of the existing devices. So, we have developed the measurement device using the reaction torque sensor to obtain the pure friction torque, fitted in the casing. In this report, we intend to make an introduction about this measurement device for friction torque of the spherical wear part and clarify the effect of friction characteristics on supply pressure and rotational speed with three types of pocket size by using this measurement device.

  • PDF

Thermal Characteristics of Hydrostatic Guideway in Ultra Precision Positioning (초정밀위치결정을 위한 유정압안내면의 온도특성 분석)

  • 박천홍;오윤진;황주호;이득우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.37-41
    • /
    • 2002
  • Thermal characteristics of hydrostatic guideway is largely depended on the temperature of supplied oil. For improving the positioning accuracy of hydrostatic guideway, relationship between setting temperature of oil cooler and thermal characteristics is analyzed, and influence of thermal characteristics on positioning accuracy is also analyzed experimental1y in this paper. Laser scale which has 0.01 $\mu\textrm{m}$ of resolution is used as feed-back unit. From the experimental results, it is confirmed that positioning error and repeatability is minimize upto 0.21 $\mu\textrm{m}$ and 0.18 $\mu\textrm{m}$ when the temperature of supplied oil is setting equal to temperature of atmosphere, and also confirmed that thermal deformation, which occurs by the temperature deviation between table and rail or scale supporter, works as limit of repeatability in long time operation.

  • PDF

Basic Characteristics of a Self-Compensated Hydrostatic Journal Bearing (자기보상형 유정압저어널베어링의 기본특성)

  • 박천홍;이영준;홍성욱;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.227-230
    • /
    • 2004
  • A self-compensated water-hydrostatic bearing has advantages in bearing stiffness. In this paper, the mechanism is applied to hydrostatic journal bearing for achieving the high bearing stiffness. The finite element method is applied to analyze the load characteristics of the self-compensated journal bearing. From the analyzed results, it is confirmed that though the self-compensated journal bearing has higher load capacity and stiffness than conventional fixed capillary journal bearing, the merit is decreased in the case of high eccentricity, that is, a spindle system with self-compensated journal bearing must be designed to have the load capacity large enough. For improving the practicality, a rectangular type capillary is introduced and discussed. Theoretically analyzed results show that it has more advantages than the conventional annular type capillary in the practical usage. The experimental verification on the analysis method is performed, and the experimental results show good agreement with theoretical results.

  • PDF