• Title/Summary/Keyword: Hydroponic seedlings

Search Result 50, Processing Time 0.02 seconds

Study on $\textrm{NH}_4\textrm{H}_2\textrm{PO}_4$ in Nutrient Solution using Tap Water during Hydroponic raising of Crisp Lettuce (수돗물을 용수로 사용한 결구상추의 수경육묘시 배양액내 $\textrm{NH}_4\textrm{H}_2\textrm{PO}_4$ 에 관한 연구)

  • 김주희;김혜진;김영식
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.181-187
    • /
    • 1995
  • This study was conducted to investigate the effect of NH$_4$H$_2$PO$_4$ on pH of the nutrient solution using municipal tap water during hydroponic culture of crisp lettuce (Lactuca sativa var. capitata) seedlings. The composition of starter solution was different from that of supplementary solution. The pH in the nutrient solution was suddenly declined and recovered as the supplementary solution was supplied. The pH of nutrient solution was increased with high temperature and, on the contrary, the EC of nutrient solution was decreased. It shows that plant absorbed nutrients more than water in given solution when the temperature and light was high. After supplying supplementary solution in 1st and End experiment, pH was slowly increased to 7 in NH$_4$H$_2$PO$_4$ 0.25me/$\ell$, but maintained 6.4-6.5 in NH$_4$H$_2$PO$_4$ 3me/$\ell$ and 6me/$\ell$. In 3rd experiment, pH was slowly increased from 6.7 to 7.4 in NH$_4$H$_2$PO$_4$ 0.25me/$\ell$, but decreased from 6-6.5 to 5-5.5 in NH$_4$H$_2$PO$_4$ 3me/$\ell$ and 6me/$\ell$. So it is suggested that the concentration between 0.25 me/$\ell$ and 3 me/$\ell$ by concentration base or the amount of NH$_4$H$_2$PO$_4$ between 1me/6 $\ell$ and 7me/6 $\ell$ by total quantity in solution is appropriate for stabilizing pH in the nutrient solution. Also this experiment suggests that hand operated measurements must be cautious due to the change of pH and EC within a 24-hour cycle.

  • PDF

Growth Characteristics and Germanium Absorption of Brasica juncea C. with Different Types of Germanium Compounds in Hydroponic Cultivation (게르마늄 종류별 양액재배시 갓의 생육특성 및 게르마늄 흡수)

  • Kang, Se-Won;Seo, Dong-Cheol;Jeon, Weon-Tai;Kang, Seok-Jin;Lee, Seong-Tae;Sung, Hwan-Hoo;Choi, Ik-Won;Kang, Ui-Gum;Kim, Hyun-Ook;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.465-472
    • /
    • 2011
  • To investigate the effect of inorganic ($GeO_2$) and organic (Ge-132) germanium treatment on Brasica juncea C. plant, growth characteristics and Ge contents were examined with various inorganic or organic germanium treatments (0, 5, 10, 25, 50, 75 and $100mg\;L^{-1}$), respectively. Brasica juncea C. growth did not much inhibited until Ge $10mg\;L^{-1}$ concentration under both Ge-132 and $GeO_2$ treatments as compared to control. On the other hand, at Ge concentration higher than $25mg\;L^{-1}$ concentration, Brasica juncea C. growth was inhibited under both Ge-132 and $GeO_2$ treatments. Under treatment of $GeO_2$, length of root and shoot slightly increased until $5mg\;L^{-1}$ concentration and dry weight slightly increased until $10mg\;L^{-1}$ concentration. Under treatment of Ge-132, length of root and shoot slightly increased until $10mg\;L^{-1}$ concentration and dry weight slightly increased until $25mg\;L^{-1}$ concentration. Total Ge contents in Brasica juncea C. early seedlings with $GeO_2$ treatment were a bit higher than those with Ge-132 treatment. Germanium was primarily accumulated in the roots (77%) with organic Ge (Ge-132) treatments, whereas Ge was primarily accumulated in the leaf (70%, respectively) with $GeO_2$ treatments. The Ge uptake rates in inorganic Ge treatments were slightly high than those in organic Ge treatments. Under inorganic Ge treatment with $2.5mg\;L^{-1}$, about 3% of Ge was accumulated into plant and distribution in leaf and root was 84.8% and 15.2%, respectively. Under organic Ge treatment with $2.5mg\;L^{-1}$, about 2.6% of Ge was accumulated into plant and distribution in leaf and root was 66.4% and 33.6%, respectively.

Physiological Response of Chinese Cabbage to Salt Stress (염 스트레스에 대한 배추의 생리학적 반응)

  • Kim, Ju-Sung;Shim, Ie-Sung;Kim, Myong-Jo
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.343-352
    • /
    • 2010
  • In order to understand the plant responses to salt stress (0, 50, and 100 mM NaCl), Chinese cabbage seedlings grown up to two leaf stages by hydroponic culture were used. Fresh and dry weight, chlorophyll (Chl), antioxidant materials, polyamine content, antioxidant enzyme activities, and inorganic ion level were evaluated. Fresh and dry weights of Chinese cabbage increased with the increase in salinity while the optimal growth occurred at 50 mM NaCl. The Chl a, total Chl, carotenoid content, and Chl a/b ratio increased by the 6 days after treatment with 100 mM NaCI; however, the Chl b content decreased. Glutathione increased in the root of Chinese cabbage for 6 days. Dehydroascorbate increased remarkably by day 6 caused by the salt stress in both leaf and the root. While ascorbate peroxidase increased, the activity of catalase and glutathione reductase decreased gradually in the first leaf for 6 days. The $Na^+$ content increased by 12.5-fold in the 3 days after treatment with 100 mM NaCI in the shoot, whereas the $Ca^{2+}$, $K^+$, and $Mg^{2+}$ content measured in the same treatment decreased by 43 to 57%. Spermidine content decreased as salinity increased, but spermine content increased. The growth promotion, glutathione and ascorbic acid content in Chinese cabbage were increased by low salt stress, and shortening of the cultivation period for growth increase of Chinese cabbage is expected.

A Quality Prediction Model for Ginseng Sprouts based on CNN (CNN을 활용한 새싹삼의 품질 예측 모델 개발)

  • Lee, Chung-Gu;Jeong, Seok-Bong
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.41-48
    • /
    • 2021
  • As the rural population continues to decline and aging, the improvement of agricultural productivity is becoming more important. Early prediction of crop quality can play an important role in improving agricultural productivity and profitability. Although many researches have been conducted recently to classify diseases and predict crop yield using CNN based deep learning and transfer learning technology, there are few studies which predict postharvest crop quality early in the planting stage. In this study, a early quality prediction model is proposed for sprout ginseng, which is drawing attention as a healthy functional foods. For this end, we took pictures of ginseng seedlings in the planting stage and cultivated them through hydroponic cultivation. After harvest, quality data were labeled by classifying the quality of ginseng sprout. With this data, we build early quality prediction models using several pre-trained CNN models through transfer learning technology. And we compare the prediction performance such as learning period and accuracy between each model. The results show more than 80% prediction accuracy in all proposed models, especially ResNet152V2 based model shows the highest accuracy. Through this study, it is expected that it will be able to contribute to production and profitability by automating the existing seedling screening works, which primarily rely on manpower.

Effect of Air Temperature on Growth and Phytochemical Content of Beet and Ssamchoo (온도처리가 비트와 쌈추의 생육과 생리활성 물질 함량에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Hee Ju;Jang, Yoon Ah;Lee, Jun Gu
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.303-308
    • /
    • 2015
  • The consumption of leaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for "Ssam (vegetable wrap-up), eaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for asoned condiments inside several layers of young vegetable leaves. This study investigated the effect of air temperature on the growth and phytochemical contents of beet (Beta vulgaris L.) and Ssamchoo (Brassica lee L. ssp. namai) grown in a closed-type plant factory system where fluorescent lamps were used as an artificial light source. Seeds of beet and Ssamchoo were sown in a peat-lite germination mix. The roots of 20-day-old seedlings were washed, and the seedlings were planted on a styrofoam board and grown in hydroponic beds for 25 days under fluorescent light. Plants were exposed to one of three different air temperature regimes (20, 25 and $30^{\circ}C$ during the day combined with $18^{\circ}C$ during the night), which were monitored with a sensor at 30 cm above the plant canopy. Increased plant height and leaf area were observed in beet at $25^{\circ}C$ and $30^{\circ}C$ compared to $20^{\circ}C$. For Ssamchoo, the greatest plant height, leaf area, fresh weight and dry weight were obtained at $20^{\circ}C$. Ascorbic acid content of beet and Ssamchoo leaves were highest at $30^{\circ}C$. In beet, total polyphenol and flavonoid contents were higher at $20^{\circ}C$ (42.4, $197.0mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (46.9, $217.0mg{\cdot}g^{-1}DW$) than $30^{\circ}C$ (22.4, $88.0mg{\cdot}g^{-1}DW$). In Ssamchoo, total polyphenol and flavonoid contents were also higher at $20^{\circ}C$ (79.2, $268.2mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (66.3, $258.3mg{\cdot}g^{-1}DW$), respectively, than $30^{\circ}C$ (53.7, $134.7mg{\cdot}g^{-1}DW$). Hence, the optimum temperature appears to be $20^{\circ}C$ for growing both beet and Ssamchoo in a closed-type plant factory system with fluorescent light.

Effect of Day/Night Temperatures during Seedling Culture on the Growth and Nodes of Early Flower Cluster Set of 'Seokwang' Tomato (Lycopersicum esculentum Mill.) (육묘시의 주야간 기온이 서광 토마토의 생육 및 초기 착화 절위에 미치는 영향)

  • 김오임;정병룡
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.75-82
    • /
    • 1999
  • This study was carried out to examine the effect of day/nignt temperatures during seedling culture on the vegetative and reproductive growth of Lycopersicum esculentum ‘Seokwang’. The study was consisted of two culture stages, plug seedling production in the growth chamber and hydroponic culture of the plant in a glasshouse. Experiments were replicated over time. The germinated seedlings were raised for 33 days (experiment 1) and 35 days (experiment 2) in 4 growth chambers, each with day/night temperatures of either $25^{\circ}C$/$25^{\circ}C$, 16$^{\circ}C$/16$^{\circ}C$, 16$^{\circ}C$/$25^{\circ}C$ or $25^{\circ}C$/16$^{\circ}C$. Cool-white fluorescent lamps provided 140$\mu$mol.m$^{-2}$ .s$^{-1}$ light for 12h each day. In the second experiment, all chambers were supplied with 1000$\mu$mol.mol$^{-1}$ CO$_{2}$ during the photoperiod and had an air velocity of 0.3m.s$^{-1}$ and relative humidity of 80%. Plug seedlings raised were transplanted to rockwool slabs in a glasshouse and were grown hydroponically using the same nutrient solutions used for seedling culture for 37 days (experiment 1) and 35 days (experiment 2). Plant height was affected more by mean daily temperature than by interaction of day and night temperatures. Plant height was the highest in 16/16$^{\circ}C$ treatment. Leaf count was not affected by day and night temperatures, and the chlorophyll concentration was the highest in 16/$25^{\circ}C$ treatment. Fresh and dry weights of stem tended to be greater in treatments of constant day and night temperature. The number of node on which first and second flower clusters were set was significantly higher in 25/$25^{\circ}C$ treatment than in the other treatments. Days to flower of the first flower on the first flower cluster were the greatest in 25/$25^{\circ}C$ and the least in 16/$25^{\circ}C$ treatment. Vegetative and reproductive growth, such as height, fresh and dry weights, days to flower, and nodes of the 1st and 2nd flower cluster set were affected by day/night temperatures.

  • PDF

Photosynthetic characteristics and growth analysis of Angelica gigas according to different hydroponics methods (당귀의 광합성 특성과 수경재배 방식에 따른 생장 분석)

  • Park, Jong-Seok;Kim, Sung-Jin;Kim, Hong-Ju;Choi, Jong-Myung;Lee, Gong-In
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.321-326
    • /
    • 2014
  • The aim of this study was to investigate which hydroponic system is the optimum for growth and photosynthetic characteristics of Angelica gigas during experiment. Angelica gigas 'Manchu' were sowed and managed under a growth room chamber. The environmental conditions (temperature $22^{\circ}C/18^{\circ}C$ (day/night), relative humidity 50-70%, photosynthetic photon flux density (PPFD) $120{\pm}6{\mu}mol\;m^{-2}s^{-1}$) were maintained for 3 weeks. Forty eight seedlings with 4-5 leaves were transplanted in deep flow technique (DFT), substrate, and spray culture systems [culture bed: 800 (L) ${\times}$ 800 (W) ${\times}$ 400 mm(H)] under $150{\pm}5{\mu}mol\;m^{-2}s^{-1}$ PPFD provided with fluorescence lamps and cultivated for 11 weeks. At the end of the experiment, fresh and dry weights, leaf lenghth and width, SPAD, root fresh, and dry weights, and root volume of Anglica gigas were measured. Photosynthetic rate of Anglica gigas were measured with portable photosynthesis systems to investigate optimum PPFD, $CO_2$ concentration, and air temperature conditions. Fresh and dry weights of Anglica gigas grown in substrate were significantly greater than DFT-treated, but there were not significant with spray treatment. Leaf photosynthesis of Anglica gigas showed the tendency to sharply increase as PPFD was increased from 50 to $200{\mu}mol\;m^{-2}s^{-1}$. Though $CO_2$ saturation point was around $1000-1200{\mu}mol\;mol^{-1}$, increase in air temperature from 16 to $26^{\circ}C$ did not quite affect photosynthesis of Anglica gigas. In conclusion, Anglica gigas may be optimally cultivated with a spray culture system as air temperature, PPFD, and $CO_2$ concentration for environment are controlled at $20{\pm}3^{\circ}C$, $150{\mu}mol\;m^{-2}s^{-1}$, and around $1000{\mu}mol\;mol^{-1}$ for mass production.

Effect of Plasma-activated Water Process on the Growth and Functional Substance Content of Lettuce during the Cultivation Period in a Deep Flow Technique System (담액수경재배 시스템에서 플라즈마수 처리가 상추의 생육 및 페놀류 함량에 미치는 영향)

  • Noh, Seung Won;Park, Jong Seok;Kim, Sung Jin;Kim, Dae-Woong;Kang, Woo Seok
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.464-472
    • /
    • 2020
  • We suggest a hydroponic cultivation system combined with a plasma generator to investigate the changes in the growth and functional substance content of lettuces during the cultivation period. Lettuce seedlings of uniform size were planted in semi-DFT after seeding for 3 weeks, and the plasma-activated water was intermittently operated for 1 hour at an 8 hours cycle for 4 weeks. Lettuces grew with or without plasma-activated water with the nutrient solution in hydroponics culture systems. Among the reactive oxygen species generated during plasma-activated water treatment, brown spots and necrosis appeared in the individuals closer to the plasma generating device due to O3, and there was no significant difference in the growth parameters. While the rutin and total phenolic content of the lettuce shoot grown in the nutrient solution were higher than that of the plasma-activated water, epicatechin contents in plasma-activated water were significantly greater than the nutrient solution. However, in the roots, all kinds of secondary metabolites measured in this work, rutin, epicatechin, quercetin, and total phenolic contents, were significantly higher in the plasma-activated water than the control. These results were indicated that the growth of lettuce was decreased due to the reactive oxygen species such as ozone in the plasma-activated water, but the secondary metabolites in the root zone increased significantly. It has needed to use this technology for the cultivation of root vegetables with the modified plasma-activated water systems to increase secondary metabolite in the roots.

Application of Seawater Plant Technology for supporting the Achievement of SDGs in Tarawa, Kiribati (키리바시 타라와의 지속가능발전목표 달성 지원을 위한 해수플랜트 기술 활용)

  • Choi, Mi-Yeon;Ji, Ho;Lee, Ho-Saeng;Moon, Deok-Soo;Kim, Hyeon-Ju
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.136-143
    • /
    • 2021
  • Pacific island countries, including Kiribati, are suffering from a shortage of essential resources as well as a reduction in their living space due to sea level rise and coastal erosion from climate change, groundwater pollution and vegetation changes. Global activities to solve these problems are being progressed by the UN's efforts to implement SDGs. Pacific island countries can adapt to climate change by using abundant marine resources. In other words, seawater plants can assist in achieving SDGs #2, #6 and #7 based on SDGs #14 in these Pacific island countries. Under the auspice of Korea International Cooperation Agency (KOICA), Korea Research Institute of Ships and Ocean Engineering (KRISO) established the Sustainable Seawater Utilization Academy (SSUA) in 2016, and its 30 graduates formed the SSUA Kiribati Association in 2017. The Ministry of Oceans and Fisheries (MOF) of the Republic of Korea awarded ODA fund to the Association. By taking advantage of seawater resource and related plants, it was able to provide drinking water and vegetables to the local community from 2018 to 2020. Among the various fields of education and practice provided by SSUA, the Association hope to realize hydroponic cultivation and seawater desalination as a self-support project through a pilot project. To this end, more than 140 households are benefiting from 3-stage hydroponics, and a seawater desalination system in connection with solar power generation was installed for operation. The Association grows and supplies vegetable seedlings from the provided seedling cultivation equipment, and is preparing to convert to self-support business from next year. The satisfaction survey shows that Tarawa residents have a high degree of satisfaction with the technical support and its benefits. In the future, it is hoped that SSUA and regional associations will be distributed to neighboring island countries to support their SDGs implementations.

Leaf Mineral Contents and Growth Characteristics of Strawberry Grown in Aquaponic System with Different Growing Media in a Plant Factory (식물공장형 아쿠아포닉스 시스템에서 배지 종류에 따른 딸기 잎의 무기이온 함량과 생육 특성)

  • Su-Hyun Choi;Min-Kyung Kim;Young-Ae Jeong;Seo-A Yoon;Eun-Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.122-131
    • /
    • 2023
  • This study was aimed to determine the effects of grow media on the mineral contents of the leaves and growth characteristics of strawberry grown under aquaponics system in a plant factory. For aquaculture, 12 fish (Cyprinus carpio) (total weight, 2.0 kg) were raised in an aquaponics tank (W 0.7 m × L 1.5 m × H 0.45 m, 472.5 L) filled with 367.5 L of water at a density of 5.44 kg·m-3 and total 34 of strawberry seedlings were transplanted in the pots filed with 200 g of orchid stone, hydroball or polyurethane sponge in the growing bed (W 0.7 m × L 1.5 m × H 0.22 m) laid out with holly acrylic sheet (140×60 mm, Ø80) on the top of the system. The pH and EC of the aquaponic solution was ranged from 7.6 to 4.9 and 0.24-0.91 dS·m-1, respectively. The concentration of NO3-N was about 28% lower than that of the hydroponic standard solution, and K, Fe and B were 10, 27 and 3.8 times lower, respectively; however, the mineral contents of strawberry leaves were in the appropriate ranges with lower contents in the leaves grown with sponge media. The organic content (OM), nitrogen (N), phosphorus (P), and potassium (K) of the sludge were 61.5, 5.72, 8.92, and 0.24%, respectively. The leaf area, leaf number, and dry and fresh weights of shoot at 81 DAT were significantly higher in the hydroball, and the average number of fruits per plant was significantly higher in both the orchid stone and hydroball. There was no significant difference in the fresh and dry weights of fruits. Integrated all the results suggest that the orchid stone and hydroball media are more effective to utilize nutrients in solid particles of aquaponic solution, compared to the polyurethane sponge.