• Title/Summary/Keyword: Hydropneumatic System

Search Result 9, Processing Time 0.019 seconds

Hydropneumatic Modeling and Analysis of a Heavy Truck Cabin Air Suspension System (대형 트럭 캐빈 공기 현가장치의 유공압 모델링 및 해석)

  • Shin, Hang-Woo;Choi, Gyoo-Jae;Lee, Kwang-Heon;Ko, Han-Young;Cho, Gil-Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.128-134
    • /
    • 2008
  • In this paper, a hydropneumatic modeling and analysis of a heavy truck cabin air suspension system is presented. Cabin air suspension system is a system which improves ride comfort of a heavy truck and it can reduce vibration between truck frame and cabin. The components of the system, air spring, shock absorber, leveling valve and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characteric of heavy truck cabin air suspension system.

Hydropneumatic Modeling and Dynamic Characteristic Analysis of a Heavy Truck Semi-active Cabin Air Suspension System (대형 트럭 반능동형 캐빈 공기 현가시스템의 유공압 모델링 및 동특성 해석)

  • Lee, Kwang-Heon;Jeong, Heon-Sul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2011
  • In this paper, a hydropneumatic modeling and dynamic analysis of a heavy truck semi-active cabin air suspension system is presented. Semi-active cabin air suspension system improves driver's ride comfort by controlling the damping characteristics in accordance with driving situation. So it can reduce vibration between truck frame and cabin. Semi-active cabin air suspension system is consist of air spring, leveling valve and CDC shock absorber, and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characterics of heavy truck semi-active cabin air suspension system.

Practical Semiactive Control of Hydropnematic Suspension Units (유기압 현수장치의 반능동 제어 구현에 관한 연구)

  • 이윤복;송오섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.9-21
    • /
    • 2003
  • This paper describes the practical implementation of a semiactive hydropneumatic suspension system to provide the high off-road performance of military tracked vehicles. Real gas behavior of a spring system, frictional forces of joints, and the dynamics of a continuously variable damper are considered. The control system is consisted of two control loops, an outer loop calculates a target spool position which can deliver the required damping force and an inner loop tracks the required spool position. Dynamic tests of the one axis model show that the semiactive suspension system considerably reduces the acceleration as well as velocity and displacement of the sprung mass than the passive one.

Mini PC control system for BYG type water supply units (BYG형 급수기의 MINI PC 제어 시스템)

  • 박용규;강영모
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1167-1171
    • /
    • 1993
  • A highly efficient hydropneumatic water supply system type BGY is designed and built in accordance with ISO standard. The technical features of BYG type pump unit can be summarized as follows: - reduce hydropneumatic tank capacity at the ratio of 1/10 - 1/30 compared with conventional method. - ISO standard pumps can be used. - the development of highly efficient water supply system type BYG is based on long-term experiences with the proven constant pressure water supply technique which minimize pressure fluctuation, rapid pilsation, etc. The text contains the operation principle of BYG type water supply system, introduction of closed cycle control process focused on Mini PC and experimental results of type BYG-IVS-90x45.

  • PDF

Analysis of the Dynamic Characteristics of the In-Arm Type Hydropneumatic Suspension Unit (암 내장형 유기압 현수장치의 동특성 해석)

  • Lee, H.W.;Jo, J.R.;Lee, J.K.;Jang, M.S.;An, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.519-524
    • /
    • 2003
  • In this paper we discuss the dynamic characteristics of the in-arm type hydropneumatic suspension unit(ISU). For this, two accurate models are introduced. The first one is the Benedict-Webb-Rubin equation which is adopted for the spring behavior of a real gas. This equation is applicable for the high pressure of the nitrogen gas which acts as a spring in ISU system. The second one describes the behavior of a damper, which is divided into four parts - jounce-loading, jounce-unloading, rebound-loading and rebound-unloading. This approach gives a good approximation of the real damper system. For the comparison purpose, the numerical results of the dynamic behavior of ISU system using a real gas and an ideal gas are given in the paper.

  • PDF

Pressure loss coefficient measurements of pyrostarter filters (파이로스타터용 필터 압력손실계수 측정)

  • Hong, Moon-Geun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.126-133
    • /
    • 2007
  • An experimental apparatus has been designed and prepared in order to measure a pressure loss coefficient of hydropneumatic components, which is an important parameter in a hydropneumatic system Blow-down system has been adopted for the experimental apparatu to meet the high flow energy requirement as well as the apparatus safety. Especially, pressure loss coefficient measurements of pyrostarter filters have been performed and the pressure loss coefficient, K of CQSF has been experimentally acquired. Then it is shown that the turbine inlet pressure $p_2$, which is predicted from the measured K, is in accord with the results of combustion tests. Moreover, the relation between K and combustion pressure $p_0$ has been presented and it is disclosed that the relation accords well with the results of combustion tests. It is anticipated that K of a filter could play a role in PS size reduction by rising up the combustion pressure resulting in increasing the burning rate of solid propellant.

  • PDF

TRENDS IN TRACTOR DEVELOPMENT, WEST EUROPEAN VIEW (서유럽의 트랙터 개발 경향)

  • Renius, K.Th.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11a
    • /
    • pp.31-75
    • /
    • 2000
  • The tractor is the most important machine for farming keeping probably this position also for feeding the future fast growing world population. Band width of power and functions continues to increase worldwide, examples are given. Regarding the high developed countries, general farming demands as well as precision farming issues require closed loop control principles for the system "driver-tractor-implement". Progress in information technologies supports this trend, but comprehensive component and system developments are necessary to make the tractor ready for automatic or semi-automatic controls. The following technical highlights are, for example, discussed for Europe: hydropneumatic front axle suspensions, 50 km/h top speed, front brakes, electronically controlled multivalve diesel engines, automatic hydrostatic power split CVTs, load sensing hydraulics with proportional valves, improved cab and working places with "operations by wire" and more electronics on board than ever before.

  • PDF

The Review of Saturn V 1st Stage (S-IC) Propulsion System (Saturn V 발사체 1단(S-IC) 추진기관 시스템 연구)

  • Hong, Yonggi;Kim, Cheulwoong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2015
  • It had been almost a half century since Apollo Mission was ended. However, in these days, a lot of researches are being conducted for restoration and making improvements in technologies used in Saturn V rocket's development. This study reviews the first stage of Saturn V rocket(S-IC), from development history to technologies in various subsystems such as engine purge system, POGO suppression system, hydraulic and pneumatic control system, propellant dispersion system, telemetry system and retrorocket system. Understandings of S-IC stage's operation systems would be helpful in understanding of launch vehicle system and reduction of time and cost in future development process.

A Study on Dynamic Response Optimization of a Tracked Vehicle (궤도차량의 동적반응 최적설계에 관한 연구)

  • Kim, Y.H.;Kim, M.S.;Choi, D.H.;U, H.H.;Kim, J.S.;Kim, J.H.;Suh, M.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.16-29
    • /
    • 1995
  • In this study a tracked vehicle is idealized as a 2-dimensional 9-degrees-of-freedom model which takes into account the effects of HSU units, torsion bars, and track. For the model equations of motion are derived using Kane's method. By using the equations of motion, a numerical example is solved and results are compared to those obtained by using a general purpose multi body dynamic analysis program. The comparison study shows the reasonable coherence between the two results. which confirms the effectiveness of the model. With the model, dynamic response optimization is carried out. The objective function is the peak value of the vertical acceleration of the vehicle at the driver's seat, and the constraints are the wheel travel limits, the ground clearance. and the limits of other design variables. Three different sets of design variables are chosen and used for the optimization. The results show the attenuation of the acceleration peak value. Thus the procedure presented in this study can be utilized for the design improvement of the real system.

  • PDF