• Title/Summary/Keyword: Hydrophobicity

Search Result 763, Processing Time 0.022 seconds

Electrical Properties of Silicone Rubber with Different Particle Size and Amount of ATH (ATH의 입자크기 및 첨가량에 따른 실리콘 고무의 전기적 특성)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Myung, In-Hae;Lee, Tae-Hui;Lee, Tae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.227-230
    • /
    • 2003
  • Silicone rubber has very excellent chemical stability and hydrophobicity. A hydrophobic surface can prevent the formation of continuous water films on the surface in wet and heavily contaminated conditions. This phenomenon contributes to the suppression of leakage current and partial discharges on insulator surfaces. Silicone rubber has been used much for housing materials of polymer insulators. ATH is added to the silicone rubber for improvement of its resistance against surface discharge. In this paper, ATH with different particle size and content was added to the silicone rubber during compounding. Silicone rubber was deteriorated by a corona treatment. Hydrophobicity recovery rate after corona treatment and arc resistance of silicone rubber were investigated. Hydrophobicity recovery rate of silicone rubber was evaluated by the measurement of contact angle. Arc resistance was evaluated by measuring weight loss of silicone rubber after arc resistance test. It was observed that the hydrophobicity recovery rate and arc resistance of silicone rubber were different when different particle size and content of ATH were added.

  • PDF

The properties of hydrophobic concrete prepared by biomimetic mineralization method

  • Huang, Chung-Ho;Fang, Hao-Yu;Zhang, Jue-Zhong
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.351-359
    • /
    • 2019
  • In this study, the calcium hydroxide, an inherent product of cement hydration, was treated using biomimetic carbonation method of incorporating stearic acid to generate the hydrophobic calcium carbonate on concrete surface. Carbonation reaction was carried out at various $CO_2$ pressure and temperatures and utilizing the Scanning Electron Microscope (SEM), chloride-ion penetration test apparatus, and compression test machine to investigate the hydrophobicity, durability, and mechanical properties of the synthesized products. Experimental results indicate that the calcium stearate may change the surface property of concrete from hydrophilicity to hydrophobicity. Increasing reaction temperature can change the particles from irregular shapes to needle-rod structures with increased shear stress and thus favorable to hydrophobicity and microhardness. The contact angle against water for the concrete surface was found to increase with increasing $CO_2$ pressure and temperature, and reached to an optimum value at around $90^{\circ}C$. The maximum static water contact angle of 128.7 degree was obtained at the $CO_2$ pressure of 2 atm and temperature of $90^{\circ}C$. It was also found that biomimetic carbonation increased the permeability, acid resistance and chloride-ion permeability of the concrete material. These unique results demonstrate that the needle-rod structures of $CaCO_3$ synthetized on concrete surface could enhance hydrophobicity, durability, and mechanical properties of concrete.

미생물 고정화 담체의 물리적 특성

  • 박영식;구기우
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.269-274
    • /
    • 1998
  • In order to develop of support medla for bloom reactor, physicochemical properties and attachability of surface of activated carbon, clay mineral, non-clay mineral, and waste mold sand were enamined. Measured physicochemical properties of materials were surface roughness, mean particle size, surface area, hydrophobicity, and surface charge. At a tested materials, activated carbon was the best attachable material and microorganisms were attached $20.1{\times}10^7CFU/cm^2$ at surface, compared with diatomaceous earth which were attached of $9.2{\times}10^7CFU/cm^2$ in our research, surface area and hydrophobicity show- ed more Influence than any other factor on attachment of microorganisms.

  • PDF

Effect of Surface Charge in Hydrophobicity of Insulating Material and Decay of Surface Voltage after Corona Charging

  • Huh, Chang-Su;Youn, Bok-Hee;Seo, You-Jin;Hwang, Sun-Mook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.1-5
    • /
    • 2003
  • This paper presented the effects of accumulation of surface charges on hydrophobicity level and the surface states of silicone polymer used for outdoor insulator treated by ultraviolet irradiation and corona discharge through measuring surface voltage decay of a corona-charged specimen were investigated. The surface resistivity by the method of the surface potential decay was compared with the value by the three electrodes methods. From this study, it was found that the accumulation of surface charges above a critical surface voltage on silicone insulating materials could lead to the temporary loss of surface hydrophobicity. In addtion, uv stress lead to a longer decay time of surface charges. We could conclude that the effects of surface charges on hydrophocity level and the changes of surface state by various artificial treatments were understood through a trend of surface potential decay.

  • PDF

Effects of Surface Charges on Hydrophobicity and Surface Potential Decay with Various Surface States of Silicone Rubber for Outdoor Insulator (옥외용 실리콘 절연재료의 발수성에 미치는 표면전하의 영향과 표면 상태에 따른 표면전위 감쇠)

  • 연복희;박충렬;허창수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.678-686
    • /
    • 2002
  • This paper presents the effects of accumulation of surface charges on hydrophobic level and the changes of surface potential decay with various artificial environment treatments on high temperature vulcanized (HTV) silicone rubber used for outdoor insulating material. For this study, the charging apparatus by corona discharge, in which grid electrode was installed between the main corona and ground electrode, was used. From this study, it was found that the accumulation of surface charges above a critical surface potential on silicone insulating materials could lead to the temporary loss of surface hydrophobicity. In addition, corona stress and water absorption stress increase the decay rate of surface charges of HTV silicone rubber, while ultraviolet (UV) stress causes longer decay time. We could conclude that the effects of surface charges on hydrophobicity level and the changes of surface state by various artificial treatments were found through a trend of surface potential decay.

Structure of Water Molecules inside Nanotubes with Varying Hydrophobicity Using Mole cular Dynamics Simulation (분자동역학 기법을 이용한 나노튜브의 소수성 또는 친수성에 의한 내부 물 분자의 구조 연구)

  • Kim, Dae-Joong;Wangperawong, Artit;Darve, Eric
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.660-661
    • /
    • 2008
  • Nanotubes fabricated with diverse materials show different hydrophobic properties. The hydrophobic property is one of key properties for possible applications to ion channels due to their affinity. This study focuses on the structures of water molecules inside nanotubes with varying hydrophobicity using molecular dynamics simulation. Hydrophobicity here is determined by varying the attraction term in Lennard-Jones potential. The number of water molecules inside hydrophilic nanotubes increase, as expected, and their mobilities also increase. This trend is rather discrete with increasing number of water molecules and this discreteness is attributed to hydrogen bond. We plan to perform energy analysis to understand these structural results.

  • PDF

The Properties of Leakage Current of Silicone Rubber wish the Recovery of Hydrophobicity (발수성 회복에 따른 실리콘 고무의 누설전류 특성)

  • 서광석;김정호;문중섭;박용관;양계준;유영식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.501-504
    • /
    • 1999
  • The polymer insulators which are installed on outdoor have a great advantage than porcelain and 71ass, due to suppression of leakage current, light weight, low cost, etc. It needs variable evaluation methods for application of these insulators on service. The analysis of measuring leakage current is useful for ageing diagnosis because of monitoring in real-time. In this paper, we look over the recovery of hydrophobicity of silicone rubber in mini salt-fog chamber with leakage current monitoring. also, we understand the relation of between hydrophobicity and leakage current and discuss on method of leakage current monitoring.

  • PDF

Reviews on an Improvement and Measurement of the Hydrophobicity for Carbon Materials (탄소재료의 소수성 향상 방법 및 측정 방법에 대한 고찰)

  • Kang, Yu-Jin;Kim, Yu-Jin;Jang, Min-Hyeok;Jo, Hyung-Kun;Yoon, Seong-Jin;Han, Gyoung-Jae;Cho, Hye-Ryeong;Seo, Dong-Jin;Park, Joo-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.41-50
    • /
    • 2022
  • Recently, research on carbon adsorbents has been active as an interest in improving the environment such as indoor and outdoor air quality. Considering that causative substances deteriorate the air quality are basically volatile organic compounds, it is important to improve the hydrophobicity of the carbon materials for better removal efficiency. This study presents a method for improving hydrophobicity of carbon and a measurement of the hydrophobicity. Generally, methods of improving the hydrophobicity of carbon materials are heat treatment, acid/alkali treatment, coating and immersion with hydrophobic materials. However, it collapses the pore structure and reduces the adsorption capacity. Therefore, this study briefly introduce not only the general method for improving carbon materials' hydrophobicity but also the method for converting the precursor of the material is briefly introduced. Futhermore, this study introduces a analytical technique used to determine hydrophobic modification or not, and aims to enhance the understanding of carbon materials.

The Possible Involvement of the Cell Surface in Aliphatic Hydrocarbon Utilization by an Oil-Degrading Yeast, Yarrowia lipolytica 180

  • Kim, Tae-Hyun;Oh, Young-Sook;Kim, Sang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.333-337
    • /
    • 2000
  • An oil-degrading yeast, Yarrowia lipolytica 180, exhibits interesting cell surface characteristics under the growth on hydrocarbons. An electron microscopic study revealed that the cells grown on crude oil showed protrusions on the cell surface, and thicker periplasmic space and cell wall than the cell surface, and thicker periplasmic space and cell wall than the cells grown on glucose. Y. lipolytica cells lost its cell hydrophobicity after pronase(0.1 mg/ml) treatment. The strain produced two types of emulsifying materials during the growth on hydrocarbons; one was water-soluble extracellular materials and the other was cell wall-associated materials. Both emulsifying materials at lower concentration (0.12%) enhanced the oil-degrading activity of Moraxella sp. K12-7, which had medium emulsifying activity and negative cell hydrophobicity; however, it inhibited the oil-degrading activity of Pseudomunas sp. K12-5, which had medium emulsifying activity and cell hydrophobicity. These results suggest that the oil-degrading activity of Y. lipolytica 180 is closely associated with cell surface structure, and that a finely controlled application of Y.lipolytica 180 in combination with other oil-degrading microorganisms showed a possible enhancing efficiency of oil degradation.

  • PDF

Investigation on the Surface Hydrophobicity and Aggregation Kinetics of Human Calprotectin in the Presence of Calcium

  • Yousefi, Reza;Ardestani, Susan K.;Saboury, Ali Akbar;Kariminia, Amina;Zeinali, Madjid;Amani, Mojtaba
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.407-413
    • /
    • 2005
  • Calcium and zinc binding protein, calprotectin is a multifunctional protein with broad spectrum antimicrobial and antitumoural activity. It was purified from human neutrophil, using a two-step ion exchange chromatography. Since surface hydrophobicity of calprotectin may be important in membrane anchoring, membrane penetration, subunits oligomerization and some biological roles of protein, in this study attempted to explore the effect of calcium in physiological range on the calprotectin lipophilicity. Incubation of human calprotectin ($50\;{\mu}g/ml$) with different calcium concentrations showed that 1-anilino-8-naphthalene sulfonic acid (ANS) fluorescence intensity of the protein significantly elevates with calcium in a dose dependent manner, suggesting an increase in calprotectin surface hydrophobicity upon calcium binding. Our study also indicates that calcium at higher concentrations (6, 8 and 10 mM) induces aggregation of human calprotectin. Our finding demonstrates that the starting time and the rate constant of calprotectin aggregation depend on the calcium concentration.