• Title/Summary/Keyword: Hydrophobic parameters

Search Result 115, Processing Time 0.03 seconds

Effect of Several Solvents on Low Temperature Wool Dyeing (몇 가지 용매가 양모의 저온염색에 미치는 영향)

  • Dho, Seong-Kook
    • The Korean Fashion and Textile Research Journal
    • /
    • v.11 no.4
    • /
    • pp.672-677
    • /
    • 2009
  • To reduce the dependence of wool dyeing on the temperature several solvents with different properties and structures were added to the dye bath of C. I. Acid Yellow 42. Nearly the same total solubility parameters(${\delta}_t$) of solvents as those of wool fiber and hydrophobic part of the dyestuff were needed to increase disaggregation of dye molecules, loosening the wool fiber and wickabilty of dyeing solution; besides, the large surface tension(${\gamma}$) value of the solvents and the well balanced values of the three-component Hansen solubility parameters such as dispersion(${\delta}_d$), polar(${\delta}_p$), and hydrogen(${\delta}_h$) bonding parameters were required. Among the added solvents dimethyl phthalate(DMP) and acetophenone(AP) were satisfied with these conditions and worked the most successfully in the low temperature wool dyeing. Their effectiveness proven by the dyeing rate and the activation energy ($E_a$) of the dyeing was in the order of DMP > AP > DBE > CH > M >NONE. In conclusion the total solubility parameters(${\delta}_t$), the three-component Hansen parameters and the surface tension(${\gamma}$) of DMP and AP could be the guidelines to select suitable solvents for low temperature wool dyeing.

How to Design Membrane Chromatography for Bioseparations: A Short Review (바이오분야 분리용 막크로마토그래피 설계 방안)

  • Park, Inho;Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.145-152
    • /
    • 2021
  • While there are increasing demands on biomolecules separation, resin chromatography lacks in terms of throughput and membrane chromatography is an alternative with high binding capacity and enhanced mass transfer properties. Unlike typical membrane processing, where the performance can only be empirically assessed, understanding how mechanisms work in membrane chromatography is decisive to design biospecific processing. This short review covers three separation mechanisms, including affinity interaction modes for selectively capturing bulk molecules using biospecific sites, ion exchange modes for binding biomolecules using net charges and hydrophobic interaction modes for binding targeted, hydrophobic species. The parameters in designing membrane chromatography that should be considered operation-wise or material-wise, are also further detailed in this paper.

높은 유상비에서 Rhodococcus rhodochrous IGTS8를 이용한 탈황효율의 분석과 5-L 배양기에의 적용

  • Kim, Jin-Hong;Park, Hong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.121-125
    • /
    • 2002
  • Rhodococcus rhodochrous IGTSS (ATCC 5396S) can break organo sulfur compounds such as dibenzothiophene. Since the environment for biodesulfurization process is invariably hydrophobic, parameters in hydrophobic systems should be examined. For the model oil, hexadecane-containing 5.43mM dibenzothiophene, the volumetric desulfurization rate was decreased with the oil-to-aqueous phase ratio up to 50%. The rate declined sharply after 48h because the cell activity, which is refreshed by medium exchange, was lost. To supply the exhausted nutrients, medium exchange was performed. At 30% oil phase, most of DBT was removed by medium exchange on 48h, and the rate was 2.03mg $DBT_{removed}/L_{dispersion}-hr.$ At 50% oil phase, medium exchange on 60h was performed and the rate was 1.79mg $DBT_{removed}/L_{dispersion}-hr.$ The 300mL flask system was scaled up to a 5-L bioreactor system. On 60 h, a medium exchange was performed and the rate was 5.28mg $DBT_{removed}/L_{dispersion}-hr.$ and all of DBT was removed. It means that we can use the biodesulfurization process even 10 the high oil-to-water phase by some appropriate methods such as controlled feeding of key nutrients and the dilution or removal of some toxic metabolites by continuous reactor.

  • PDF

The Study of Wetting in Direct Contact Membrane Distillation (직접접촉식 막증발법에서의 막 젖음 현상에 관한 연구)

  • Shin, Yonghyun;Koo, Jaewuk;Han, Jihee;Lee, Sangho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.30-34
    • /
    • 2014
  • Membrane distillation (MD) is a thermal driven separation process in which separation a hydrophobic membrane is a barrier for the liquid phase, letting the vapor phase pass through the membrane pores. Therefore, a porous and hydrophobic membrane should be used in membrane distillation. MD cannot work if water penetrates into the pores of the membrane (membrane wetting). Accordingly, it is necessary to prevent wetting of MD membranes and to remove water inside the pores of the wetted membranes if possible. In this context, our study aimed to develop methods to recover wetted membranes in MD processes. Poly-vinylidene fluoride (PVDF) membranes were used in this study. A laboratory-scale direct contact MD (DCMD) system was used to examine the effect of operating parameters on wetting. For dewetting the wetted membranes, specific techniques including the use of high temperature air were applied. The performances of the membranes before and after dewetting were compared in terms of flux, salt rejection and liquid entry pressure(LEP). The surface morphology of dewetted membrane was confirmed by scanning electron microscope (SEM).

Charge-Transfer Complexing Properties of 1-Methyl Nicotinamide and Adenine in Relation to the Intramolecular Interaction in Nicotinamide Adenine Dinucleotide (NAD$^+$)

  • Park, Joon-woo;Paik, Young-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.23-29
    • /
    • 1985
  • The charge-transfer complexing properties of 1-methyl nicotinamide (MNA), an acceptor, and adenine, a donor, were investigated in water and SDS micellar solutions in relation to the intramolecular interaction in nicotinamide adenine dinucleotide ($NAD^+$). The spectral and thermodynamic parameters of MNA-indole and methyl viologen-adenine complex formations were determined, and the data were utilized to evaluate the charge-transfer abilities of MNA and adenine. The electron affinity of nicotinamide was estimated to be 0.28 eV from charge-transfer energy $of{\sim}300$ nm for MNA-indole. The large enhancement of MNA-indole complexation in SDS solutions by entropy effect was attributed to hydrophobic nature of indole. The complex between adenine and methyl viologen showed an absorption band peaked near 360 nm. The ionization potential of adenine was evaluated to be 8.28 eV from this. The much smaller enhancement of charge-transfer interaction involving adenine than that of indole in SDS solutions was attributed to weaker hydrophobic nature of the donor. The charge-transfer energy of 4.41 eV (280 nm) was estimated for nicotinamide-adenine complex. The spectral behaviors of $NAD^+$ were accounted to the presence of intramolecular interaction in $NAD^+$, which is only slightly enhanced in SDS solutions. The replacement of nicotinamide-adenine interaction in $NAD^+$ by intermolecular nicotinamide-indole interaction in enzyme bound $NAD^+$, and guiding role of adenine moiety in $NAD^+$ were discussed.

Surface Modification of Functional Titanium Oxide to Improve Corrosion Resistance (내식성 향상을 위한 기능성 타이타늄 표면 개질)

  • Park, Youngju;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.256-265
    • /
    • 2021
  • Titanium is applied in various industries due to its valuable properties and abundant reserves. Generally, if a highly uniform oxide structure and a high-density oxide film is formed on the surface through anodization treatment, the utility value such as color appearance and corrosion inhibition efficiency is further increased. The objective of this study was to determine improvement of water-repellent property by controlling titanium oxide parameters such as pore size and inter-pore distance to improve corrosion resistance. Oxide film structures of different shapes were prepared by controlling the anodization processing time and voltage. These oxide structures were then analyzed using a Field Emission Scanning Electron Microscope (FE-SEM). Afterwards, a Self-Assembled Monolayer (SAM) coating was performed for the oxide structure. The contact angle was measured to determine the relationship between the shape of the oxide film and the water-repellency. The smaller the solid fraction of the surface, the higher the water-repellent effect. The surface with excellent hydrophobic properties showed improved corrosion resistance. Such water-repellent surface has various applications. It is not only useful for corrosion prevention, but also useful for self-cleaning. In addition, a hydrophobic titanium may open up a new world of biomaterials to remove bacteria from the surface.

Influence of the Surface Energetics on flotation Process - Importance of the Surface Energy and Polarity of Solid Particles in Flotation Efficiency - (부유부상 공정에 있어서 표면 에너지의 역할 - 부유부상 효율에 있어 고형 입자의 표면 에너지 및 극성성분의 중요성 -)

  • Lee, Hak-Rae;Park, Il;Lee, Yong-Min;Lee, Jin-Hee;Cho, Joong-Yeon;Han, Sin-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • The object of this study was to determine the surface energy of hydrophobically modified micro-crystalline cellulose (MCC) with AKD and evaluate the effect of surface energy of the solid particles dispersed in aqueous medium on flotation efficiency. Especially to eliminate the complication derives from the diverse parameters of solid particles including particle size, type, etc. MCC's modified with AKD have been used. The surface energy Parameters were calculated from advancing contact angles of apolar and polar liquids on MCC pellets using the Lifshitz-van der Waals acid-base (LW:AB) approach. Total surface energy of hydrophobic MCC ranged from 46.19 mN/m to 48.60 mN/m. The contribution of the acid-base components to the total surface energy ranged form 13% to 17% for hydrophobic MCC's. The effect of surface characteristics on the flotation efficiency was evaluated. It was shown that there exist critical values of surface energies to increase flotation efficiency. Total surface energy and polar component of solid particles should be lower than 47 mN/m and 7 mN/m, respectively, for effective removal in the flotation process.

Binding of Acid Dyes by Crosslinked Poly(4-vinylpyridine) in Ethylene Glycol (에틸렌글리콜중에서 가교폴리(4-비닐피리딘)과 산성염료와의 결합)

  • Lee, Suk Kee;Kim, Woo Sik
    • Textile Coloration and Finishing
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 1997
  • Two poly(4-vinylpyridines) having different degree of crosslinking were prepared by radical copolymerization of 4-vinylpyridine with N, N'-tetramethylenebis-acrylamide as a crosslinker. The abilities of these crosslinked polymers to bind acid dyes (methyl orange, ethyl orange, and propyl orange) were investigated at various temperatures in ethylene glycol as the binding medium. From the equilibrium amounts, the first binding constants and thermodynamic parameters for the bindings were evaluated. The first binding constants and thermodynamic parameters were not varied with these dyes. This result indicates that there is no hydrophobic interaction between the crosslinked polymers and the dyes in ethylene glycol. However, the first binding constants showed bell-shaped curves againtst the binding temperatures. This result could be explained in terms of the crosslinked hole size with temperature variation.

  • PDF

Quantitative structure-activity relationship of N-substituted phenyl 5-chloro-1,3-dimethylpyrazol-4-carboxamides (N-치환 phenyl 5-chloro-1,3-dimethylpyrazole-4-carboxamide의 정량적구조활성상관관계)

  • Kim, Yong-Whan;Park, Chang-Kyu
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.382-388
    • /
    • 1992
  • Mycelial growth inhibition activity of forty-one N-substituted phenyl 5-chloro-1,3-dimethylpyrazole-4-carboxamides against Rhizoctonia solani was analysed quantitatively by multiple regression analysis using physicochemical parameters of substituents as independent variables and $pEC_{50}$ as dependent variable. As a result, a quantitative structure-activity relationship was formulated using eight physicochemical parameters, which explains 83% of variance of the fungicidal activity. The most important parameter for the biological activity was log k', as related to the penetration and transport processes in the biological system. The activity also correlated with other hydrophobic parameters$({\pi}_2,\;{\pi}_3)$, an electronic parameter$({\Sigma}{\sigma})$, and steric parameters$(STERIMOL\;parameters\;L_3,\;L_4)$.

  • PDF

Sorption Characteristics of Butanol/Water and Isopropanol/Water Solutions on the FASs Coated Inorganic Membrane (FASs로 코팅한 무기막에 대한 부탄올/물, 이소프로판올/물 용액의 수착 특성)

  • Lee, Kwang-Rae
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.320-325
    • /
    • 2018
  • The sorption amounts of butanol/water and isopropanol/water solution on the surface modified with FASs (fluoroalkylsilanes) hydrophobic membrane were measured and analyzed using Hansen's solubility parameters. The difference of the solubility parameter of butanol (${\delta}_t=20.4$) and that of the surface modified with FASs hydrophobic membrane (${\delta}_t=16.9$) was greater than the case of isopropanol (${\delta}_t=24.6$), which might explain the result that the sorption amount of butanol was much higher than that of isopropanol. We might also explain the effect of the polar force (${\delta}_p$) on the sorption amount. The difference (${\Delta}$) between FASs polar force (${\delta}_p=4.6$) and butanol polar force (${\delta}_p=6.3$) was much smaller than that between FASs polar force (${\delta}_p=4.6$) and isopropanol polar force (${\delta}_p=9.0$), which meant that the interaction of butanol-FASs was much greater than that of isopropanol-FASs, and resulted in greater sorption amount of butanol on the FASs. This study showed Hansen's solubility parameters might be used for analysis of sorption characteristics of alcohol on membrane and solubility of solute in solvent.