DOI QR코드

DOI QR Code

How to Design Membrane Chromatography for Bioseparations: A Short Review

바이오분야 분리용 막크로마토그래피 설계 방안

  • Park, Inho (Department of Energy Engineering, Hanyang University) ;
  • Yoo, Seung Yeon (Department of Energy Engineering, Hanyang University) ;
  • Park, Ho Bum (Department of Energy Engineering, Hanyang University)
  • 박인호 (한양대학교 에너지공학과) ;
  • 유승연 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2021.04.22
  • Accepted : 2021.04.28
  • Published : 2021.04.30

Abstract

While there are increasing demands on biomolecules separation, resin chromatography lacks in terms of throughput and membrane chromatography is an alternative with high binding capacity and enhanced mass transfer properties. Unlike typical membrane processing, where the performance can only be empirically assessed, understanding how mechanisms work in membrane chromatography is decisive to design biospecific processing. This short review covers three separation mechanisms, including affinity interaction modes for selectively capturing bulk molecules using biospecific sites, ion exchange modes for binding biomolecules using net charges and hydrophobic interaction modes for binding targeted, hydrophobic species. The parameters in designing membrane chromatography that should be considered operation-wise or material-wise, are also further detailed in this paper.

현재 바이오 분야에서 분리에 대한 수요가 급증함에 따라, 투과율 및 결합능 측면에서 높은 성능을 띠는 막크로마토그래피가 수지 크로마토그래피의 대체 분리 공정으로 부상하고 있다. 실증을 기반으로 하여 막 소재가 결정되는 기존 분리막 공정과 달리, 막크로마토그래피의 경우 분리하고자 하는 목표 물질에 적합한 분리 메커니즘 이해 그리고 이를 기반한 공정 설계가 필요하다. 본 논문에서는 생특이성을 활용하여 선택적으로 거대 분자를 포집하는 친화성 작용, 전하를 활용하여 생분자와 결합하는 이온 교환 작용 그리고 소수성을 활용하여 생분자와 결합하는 소수성 작용과 같은 막크로마토그래피 주요 분리 메커니즘들에 대해 다루고자 한다. 또한 본 논문에서는 단계적 측면에서 또는 소재 측면에 막크로마토그래피 기술설계 시 고려해야할 변인들에 대해서 다루고자 한다.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20202020800330).

References

  1. A. L. Zydney, "New developments in membranes for bioprocessing - A review", J. Membr. Sci., 620, 118804 (2021). https://doi.org/10.1016/j.memsci.2020.118804
  2. Z. Liu, "Membrane chromatography for bioseparations: Ligand design and optimization", Ph. D. Dissertation, University of Arkansas, Fayetteville, Arkansas (2016).
  3. V. Orr, L. Zhong, M. Moo-Young, and C. P. Chou. "Recent advances in bioprocessing application of membrane chromatography", Biotechnol. Adv., 31, 4 (2013).
  4. M. Mulder, "Basic principles of membrane technology", Springer Science & Business Media (2012).
  5. R. W. Baker, "Membrane technology and applications", John Wiley & Sons, New York, NY (2012).
  6. Z. Liu, S. R. Wickramasinghe, and X. Qian. "Membrane chromatography for protein purifications from ligand design to functionalization", Sep. Sci. Technol., 52, 2 (2017).
  7. L. G. Berruex and R. Freitag. "Separation and purification of biochemicals", Academic Press (2003).
  8. C. Charcosset. "Membrane processes in biotechnology and pharmaceutics", Elsevier (2012).
  9. K. C. Hou, R. Zaniewski, and S. Roy, "Protein a immobilized affinity cartridge for immunoglobulin purification", Biotechnol. Appl. Biochem., 13, 2 (1991).
  10. S. Y. Suen, Y. C. Liu, and C. S. Chang, "Exploiting immobilized metal affinity membranes for the isolation or purification of therapeutically relevant species", J Chromatogr. B, 797, 1-2 (2003). https://doi.org/10.1016/j.jchromb.2003.09.035
  11. T. Barroso, M. Temtem, A, Hussain, A. Aguiar-Ricardo and A. C. Roque, "Preparation and characterization of a cellulose affinity membrane for human immunoglobulin G (IgG) purification", J. Membr. Sci., 348, 1-2 (2010). https://doi.org/10.1016/j.memsci.2009.11.029
  12. M. B. Ribeiro, M. Vijayalakshmi, D. Todorova-Balvay, and S. M. A. Bueno, "Effect of IDA and TREN chelating agents and buffer systems on the purification of human IgG with immobilized nickel affinity membranes", J. Chromatogr. B, 861, 1 (2008). https://doi.org/10.1016/j.jchromb.2007.11.029
  13. S. C. Burton and D. R. K. Harding, "Hydrophobic charge induction chromatography: Salt independent protein adsorption and facile elution with aqueous buffers", J. Chromatogr. A, 814, 1-2 (1998). https://doi.org/10.1016/S0021-9673(98)00338-0
  14. W. Riordan, S. Heilmann, K. Brorson, K. Seshadri, Y. He, and M. Etzel, "Design of salt-tolerant membrane adsorbers for viral clearance", Biotechnol. Bioeng., 103, 920 (2009). https://doi.org/10.1002/bit.22314
  15. C. T. Tomaz, "Hydrophobic interaction chromatography", Liquid Chromatography, Elsevier, (2017).
  16. V. Mazzini and V. S. J. Craig, "What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents", Chem. Sci., 8, 10 (2017).
  17. P. Sven, J. Rosengren, and S. Hjerten, "Hydrophobic interaction chromatography on uncharged Sepharose® derivatives: Effects of neutral salts on the adsorption of proteins", J. Chromatogr. A, 131, 99 (1977). https://doi.org/10.1016/S0021-9673(00)80924-3
  18. F. Xia, D. Nagrath, and S. M. Cramer, "Effect of pH changes on water release values in hydrophobic interaction chromatographic systems", J. Chromatogr. A, 1079, 1 (2005). https://doi.org/10.1016/j.chroma.2005.04.098
  19. D. Chandler, "Interfaces and the driving force of hydrophobic assembly", Nature, 437, 7059 (2005).
  20. D. Haidacher, A. Vailaya, and C. Horvath, "Temperature effects in hydrophobic interaction chromatography", Proceedings of the National Academy of Sciences, 93, 6 (1996).
  21. W. Guo, Z. Shang, Y. Yu, and L. Zhou. "Membrane affinity chromatography of alkaline phosphatase", J. Chromatogr. A, 685, 2 (1994).
  22. W. Guo, Z. Shang, Y. Yu, and L. Zhou, "Membrane affinity chromatography used for the separation of trypsin inhibitor", Biomed. Chromatogr., 6, 2 (1992).
  23. T. C. Beeskow, W. Kusharyoto, F. B. Anspach, K. H. Kroner, and W. D. Deckwer, "Surface modification of microporous polyamide membranes with hydroxyethyl cellulose and their application as affinity membranes", J. Chromatogr. A, 715, 1 (1995). https://doi.org/10.1016/0021-9673(95)00594-D
  24. M. Ulbricht, "Advanced functional polymer membranes", Polymer, 47, 7 (2006).
  25. M. Ulbricht and H. Yang. "Porous polypropylene membranes with different carboxyl polymer brush layers for reversible protein binding via surface-initiated graft copolymerization", Chem. Mater., 17, 10 (2005).
  26. I. Gancarz, G. Pozniak, M. Bryjak, and A. Frankiewicz, "Modification of polysulfone membranes. 2. Plasma grafting and plasma polymerization of acrylic acid", Acta Polym., 50, 9 (1999).
  27. H. Yamagishi, J. V. Crivello, and G. Belfort, "Development of a novel photochemical technique for modifying poly(arylsulfone) ultrafiltration membranes", J. Membr. Sci., 105, 3 (1995).
  28. M. M. Nasef and E. S. A. Hegazy, "Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films", Prog. Polym. Sci., 29, 6 (2004).
  29. Z. K. Xu, X. Jun. Huang, and L. S. Wan, "Surface engineering of polymer membranes", Springer Science & Business Media (2009).