• Title/Summary/Keyword: Hydrophobic parameters

Search Result 115, Processing Time 0.02 seconds

Effect of Cetyltrimethyl Ammonium Bromide on Foam Stability and SiO2Separation for Decontamination Foam Application (거품제염을 위한 실리카 나노입자와 CTAB (Cetyltrimethyl Ammonium Bromide)의 거품안정성 및 분리특성 평가)

  • Choi, Mansoo;Kim, Seung-Eun;Yoon, In-Ho;Jung, Chong-Hun;Choi, Wang-Kyu;Moon, Jei-Kwon;Kim, Seon-Byeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.173-182
    • /
    • 2018
  • As part of planning for waste minimization, decontamination foam has been considered as a potential application for the cleaning of radioactive contaminant. In this study, we synthesized silica particles to improve foam stability by varying synthesis parameters. Cetyltrimethylammonium bromide (CTAB) was found to influence the stability of the decontamination foam. The reason was that higher interaction between $SiO_2$ nanoparticles and surfactant at the air-water interface in aqueous solution is beneficial for foam stability. CTAB can also be used as an additive for the aggregation of silica nanoparticles. In the separation of $SiO_2$ nanoparticles, CTAB plays a critical role in the nanoparticles flocculation because of the charge neutralization and hydrophobic effects of its hydrocarbon tails.

Thermodynamic Study on the Solubilization of p-Halogenated Phenol Derivatives in TTAB Solution (TTAB 수용액에서 p-할로겐화 페놀유도체들의 가용화에 대한 열역학적 연구)

  • Lee, Byung-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • The interaction of p-halogenated phenol derivatives with the micellar system of tetradecyltrimethylammonium bromide (TTAB) was studied by the UV/Vis spectrophotometric method. Effects of substituents, additives, and temperatures on the solubilization of phenol derivatives have been measured. The results show that all the values of ${\Delta}G^o$ and ${\Delta}H^o$ were negative and the values of ${\Delta}S^o$ were positive for all phenol derivatives within the measured temperature range. The calculated thermodynamic parameters depended on the size, the electro-negativity, and the hydrophobic property of halogen substituents. The addition of n-butanol results in the decrement in tthe Ks values and the addition of NaCl caused the increment in the Ks values for all the phenol derivatives. From these changes we can postulate that the solubilization sites of the phenol derivatives in the micelle depend severely on properties of the halogen-substituent.

Bone healing dynamics associated with 3 implants with different surfaces: histologic and histomorphometric analyses in dogs

  • Lee, Jungwon;Yoo, Jung Min;Amara, Heithem Ben;Lee, Yong-Moo;Lim, Young-Jun;Kim, Haeyoung;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.1
    • /
    • pp.25-38
    • /
    • 2019
  • Purpose: This study evaluated differences in bone healing and remodeling among 3 implants with different surfaces: sandblasting and large-grit acid etching (SLA; IS-III $Active^{(R)}$), SLA with hydroxyapatite nanocoating (IS-III $Bioactive^{(R)}$), and SLA stored in sodium chloride solution ($SLActive^{(R)}$). Methods: The mandibular second, third, and fourth premolars of 9 dogs were extracted. After 4 weeks, 9 dogs with edentulous alveolar ridges underwent surgical placement of 3 implants bilaterally and were allowed to heal for 2, 4, or 12 weeks. Histologic and histomorphometric analyses were performed on 54 stained slides based on the following parameters: vertical marginal bone loss at the buccal and lingual aspects of the implant (b-MBL and l-MBL, respectively), mineralized bone-to-implant contact (mBIC), osteoid-to-implant contact (OIC), total bone-to-implant contact (tBIC), mineralized bone area fraction occupied (mBAFO), osteoid area fraction occupied (OAFO), and total bone area fraction occupied (tBAFO) in the threads of the region of interest. Two-way analysis of variance (3 types of implant $surface{\times}3$ healing time periods) and additional analyses for simple effects were performed. Results: Statistically significant differences were observed across the implant surfaces for OIC, mBIC, tBIC, OAFO, and tBAFO. Statistically significant differences were observed over time for l-MBL, mBIC, tBIC, mBAFO, and tBAFO. In addition, an interaction effect between the implant surface and the healing time period was observed for mBIC, tBIC, and mBAFO. Conclusions: Our results suggest that implant surface wettability facilitates bone healing dynamics, which could be attributed to the improvement of early osseointegration. In addition, osteoblasts might become more activated with the use of HA-coated surface implants than with hydrophobic surface implants in the remodeling phase.

Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination

  • Sandid, Abdelfatah Marni;Neharia, Driss;Nehari, Taieb
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.235-243
    • /
    • 2022
  • The paper presents the effect of operating temperatures and flow rates on the distillate flux that can be obtained from a hydrophobic membrane having the characteristics: pore size of 0.15 ㎛; thickness of 130 ㎛; and 85% porosity. That membrane in the present investigation could be the direct contact (DCMD) or the air-gap membrane distillation (AGMD). To model numerically the membrane distillation processes, the two-dimensional computational fluid dynamic (CFD) is used for the DCMD and AGMD cases here. In this work, DCMD and AGMD models have been validated with the experimental data using different flows (Parallel and Counter-current flows) in non-steady-state situations. A good agreement is obtained between the present results and those of the experimental data in the literature. The new approach in the present numerical modeling has allowed examining effects of the nature of materials (Polyvinylidene fluoride (PVDF) polymers, copolymers, and blends) used on thermal properties. Moreover, the effect of the area surface of the membrane (0.021 to 3.15 ㎡) is investigated to explore both the laminar and the turbulent flow regimes. The obtained results found that copolymer P(VDF-TrFE) (80/20) is more effective than the other materials of membrane distillation (MD). The mass flux and thermal efficiency reach 193.5 (g/㎡s), and 83.29 % using turbulent flow and an effective area of 3.1 ㎡, respectively. The increase of feed inlet temperatures and its flow rate, with the reduction of cold temperatures and its flow rate are very effective for increasing distillate water flow in MD applications.

Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes (금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활)

  • Kim, Dong Geun;Jang, Changhwan;Kim, Seong Jae;Kim, Daegyoum;Kim, Sanha
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

Multiple effects of nano-silica on the pseudo-strain-hardening behavior of fiber-reinforced cementitious composites

  • Hossein Karimpour;Moosa Mazloom
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.467-484
    • /
    • 2023
  • Despite the significant features of fiber-reinforced cementitious composites (FRCCs), including better mechanical, fractural, and durability performance, their high content of cement has restricted their use in the construction industry. Although ground granulated blast furnace slag (GGBFS) is considered the main supplementary cementitious material, its slow pozzolanic reaction stands against its application. The addition of nano-sized mineral modifiers, including nano-silica (NS), is an alternative to address the drawbacks of using GGBFS. The main object of this empirical and numerical research is to examine the effect of NS on the strain-hardening behavior of cementitious composites; ten mixes were designed, and five levels of NS were considered. This study proposes a new method, using a four-point bending test to assess the use of nano-silica (NS) on the flexural behavior, first cracking strength, fracture energy, and micromechanical parameters including interfacial friction bond strength and maximum bridging stress. Digital image correlation (DIC) was used for monitoring the initiation and propagation of the cracks. In addition, to attain a deep comprehension of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. It was discovered that using nano-silica (NS) in cementitious materials results in an enhancement in the matrix toughness, which prevents multiple cracking and, therefore, strain-hardening. In addition, adding NS enhanced the interfacial transition zone between matrix and fiber, leading to a higher interfacial friction bond strength, which helps multiple cracking in the composite due to the hydrophobic nature of polypropylene (PP) fibers. The findings of this research provide insight into finding the optimum percent of NS in which both ductility and high tensile strength of the composites would be satisfied. As a concluding remark, a new criterion is proposed, showing that the optimum value of nano-silica is 2%. The findings and proposed method of this study can facilitate the design and utilization of green cementitious composites in structures.

Retention Behaviors of Natural Gas Components on a Single Column by Gas Chromatography (기체 크로마토그래피에 의한 단일 컬럼상에서 천연가스 성분의 머무름 거동)

  • Choi, Yong-Wook;Choe, Kun-Hyung;Lee, Dai-Woon
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.329-338
    • /
    • 1994
  • The retention behaviors of natural gas components were studied on a single column by gas chromatography. The dead time, $t_0$ was obtained by using extrapolation of homologous series to determine capacity factors. The plots of retention data for homologous series and carbon number at different temperatures were shown to converge into a single point, which point was determined as a dead time. The results of the effect of temperature on the column efficiency for n-butane exhibited the plate number, N incerased with temperature, but the resolution among the fast eluted components decreased. The adsorption enthalpy (${\Delta}H^0{_{ads}}$) for each component on 28% DC 200 stationary phase was determined, and in order to investigate the retention behaviors of natural gas components the regression analysis of log $t_R$, log k' and log ${\alpha}$ vs. van der Waals volume(Vw), molecular connectivity index(X) and hydrophobic fragmental constant(f) were carred out. Good correlation was found between log k' vs. Vw, and log k' vs. f. The correlations between the physical properties of natural gas and the physical parameters were investigated by the linear regression analysis. The relationships between Vw vs. molecular weight and heating value(${\Delta}H_{comb}$), X vs. boiling point, and f vs. molecular weight, boiling point and heating value exhibited the high correlation coefficient more than 0.99. Using the regression equation between the heating value of natural gas and Vw the predicted heating values from $C_6$ to $C_{10}$ showed good agreement with those reported in the literature within 0.2% relative error.

  • PDF

A Study on the Cleanup Process of HOCs-Contaminated Soil by Ex-situ Soil Washing Technology (Ex-situ 토양세척기법에 의한 소수성 유기오염물질로 오염된 토양의 정화에 관한 연구)

  • Choi, Sang-Il;Ryoo, Doo-Hyun;Jang, Min
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.99-107
    • /
    • 1997
  • In this study, a series of batch-scale tests were conducted to optimize the design parameters for the application of soil washing techniques to the hydrophobic organic compounds(HOCs)-contaminated soil and to find the effective methods for the recovery of surfactants from washing effluent by using solvent. Several nonionic surfactants (polyoxyethylene oleyl ester) and sophorolipid were applied to the artificially contaminated soil (4,000 mg n-dodecane/kg dry soil). The effects of washing time, concentration of surfactant solution, dilution ratio, and temperature on washing efficiencies were examined. Hydrophile-liphophile balance (HLB) number was proven to be one of the important parameters for soil washing. The HLB numbers of OA-5 and sophorolipid are too low to form a stable soil-water emulsion. They showed very low washing efficiencies less than 10e1o. If HLB number is in the proper range to form a stable soil-water emulsion, surfactant having higher solubility for HOCs shows higher washing efficiency. OA-14 having higher HLB number than OA-9 formed more stable soil-water emulsion. But its washing efficiency was about 20% due to a lower molar solubility ratio (MSR) than OA-9. OA-9, which forms a stable soil-water emulsion and has comparatively high sotubility for HOCs, showed about 60% washing efficiency by itself. To recover anthracene effectively from OA-9 washing effluent by using benzene as an organic solvent, desirable temperature and pH were $30^{\circ}C$ and 2, respectively.

  • PDF

The Pressure Effect of the Association of 2,4,6,N-Tetramethyl Pyridinium Iodide in Ethanol-Water Mixture (에탄올-물 혼합용매내에서 2,4,6,N-Tetramethyl Pyridinium Iodide의 회합에 대한 압력효과)

  • Jung-Ui Hwang;Jong-Gi Jee;Young-Hwa Lee;Uei-Ha Woo
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.79-85
    • /
    • 1984
  • The ionic association constant(K) of 2,4,6, N-tetramethyl pyridinium iodide (TeMPI) in 95 volume percentage ethanol-water mixture were determined by a modified UV and conductance method at $25^{\circ}C$ to $50^{\circ}C$ under 1 to 2,000 bars. The K values increase with increasing pressure and have maximum value at $40^{\circ}C$. The partial molar volume hange (${\Delta}V$) has relatively small negative value and the absolute values of ${\Delta}$ are minimum at $40^{\circ}C$. The ion size parameter(a) of TeMPI have maximum value at $40^{\circ}C$. {\Delta}H^{\circ}$ values are zero, positive and negative at 40^{\circ}C$, $25^{\circ}C$ and $50^{\circ}C$ respectively. Other thermodynamic parameters such as the changes of standard entropy ({\Delta}S^{\circ}$) and free energy {\Delta}G^{\circ}$ were evaluated. From these experimental results, we came to conclusion that TeMPI is stabilized by the elevation of pressure and that of temperature below $40^{\circ}C$ but weakly dimerized at $40^{\circ}C$ because of the intermolecular hydrophobic interaction of eight methyl groups of two molecules. And it thermally decomposed above $50^{\circ}C$.

  • PDF

Determination of Microviscosity and Location of 1,3-Di(1-pyrenyl) propane in Brain Membranes

  • Kang, Jung-Sook;Kang, In-Goo;Yun, Il
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • We determined the microviscosity of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex and liposomes of total lipids (SPMTL) and phospholipids (SPMPL) extracted from SPMV. Changes in the microviscosity induced by the range and rate of lateral diffusion were measured by the intramolecular excimerization of 1, 3-di(1-pyrenyl)propane (Py-3-Py). The microviscosity values of the direct probe environment in SPMV, SPMTL and SPMPL were 38.17, 31.11 and 27.64 cP, respectively, at$37^{\circ}C$and the activation energies $(E_a)$ of the excimer formation of Py-3-Py in SPMV, SPMTL and SPMPL were 8.236, 7.448 amd 7.025 kcal/mol, respectively. Probe location was measured by polarity and polarizability parameters of the probe Py-3-Py and probe analogues, pyrene, 1-pyrenenonanol and 1-pyrenemethyl-3${\beta}$-hydroxy-22, 23-bisnor-5-cholenate (PMC), incorporated into membranes or solubilized in reference solvents. There existed a good linear relationship between the first absorption peak of the $^1_a$ band and the polarizability parameter $(n^{2}-1)/(2n^{2}+1)$.The calculated refractive index values for SPMV, SPMTL and SPMPL were close to 1.50, which is higher than that of liquid paraffin (n=l.475). The probe location was also determined by using a polarity parameter $(f-1/2f^{I})$. Here f=$({\varepsilon}-1)/(2{\varepsilon}+1)$ is the dielectric constant function and $f^I=(n^2-1)/(2n^2+1)$ is the refractive index function. A correlation existed between the monomer fluorescence intensity ratio and the solvent polarity parameter. The probes incorporated in SPMV, SPMTL, and SPMPL report a polarity value close to that of 1-hexanol $({\varepsilon}=13.29)$. In conclusion, Py-3-Py is located completely inside the membrane, not in the very hydrophobic core, but displaced toward the polar head groups of phospholipid molecules, e.g., central methylene region of aliphatic chains of phospholipid molecules.

  • PDF