• 제목/요약/키워드: Hydrophobic interactions

검색결과 148건 처리시간 0.024초

The effect of surface charge balance on thermodynamic stability and kinetics of refolding of firefly luciferase

  • Khalifeh, Khosrow;Ranjbar, Bijan;Alipour, Bagher Said;Hosseinkhani, Saman
    • BMB Reports
    • /
    • 제44권2호
    • /
    • pp.102-106
    • /
    • 2011
  • Thermodynamic stability and refolding kinetics of firefly luciferase and three representative mutants with depletion of negative charge on a flexible loop via substitution of Glu by Arg (ER mutant) or Lys (EK mutant) as well as insertion of another Arg in ER mutants (ERR mutant) was investigated. According to thermodynamic studies, structural stability of ERR and ER mutants are enhanced compared to WT protein, whereas, these mutants become prone to aggregation at higher temperatures. Accordingly, it was concluded that enhanced structural stability of mutants depends on more compactness of folded state, whereas aggregation at higher temperatures in mutants is due to weakening of intermolecular repulsive electrostatic interactions and increase of intermolecular hydrophobic interactions. Kinetic results indicate that early events of protein folding are accelerated in mutants.

Evaluation of Salt, Microbial Transglutaminase and Calcium Alginate on Protein Solubility and Gel Characteristics of Porcine Myofibrillar Protein

  • Hong, Geun-Pyo;Chin, Koo-Bok
    • 한국축산식품학회지
    • /
    • 제30권5호
    • /
    • pp.746-754
    • /
    • 2010
  • Response surface methodology was adopted to model and optimize the effects of microbial transglutaminase (TG) and calcium alginate (CA) systems of various ratios on the gelation characteristics of porcine myofibrillar protein (MP) at various salt levels. The CA system consisting of sodium alginate (SA), calcium carbonate (CC) and glucono-$\delta$-lactone (GdL) showed no remarkable changes in the salt-soluble fraction, and only minor effects on electrostatic interactions were observed. Increasing CA concentration caused acid-induced hydrophobic interactions in MPs, resulting in increased MP gel strength. The TG system, containing TG and sodium caseinate (SC), induced cold-set MP gelation by formation of covalent bonding. The main advantage of the combined system was a higher cooking yield when the MP gel was heated. These results indicated that 0.7% TG combined with 0.8% CA system can form a viscoelastic MP gel, regardless of salt levels.

Effects of Specific Interaction Altering Reagents on Hardnesses of Succinylated Soy Protein Gel

  • Bae, Dongho;Jung, Hosun;Choi, Yong-Hee
    • Journal of Applied Biological Chemistry
    • /
    • 제42권3호
    • /
    • pp.125-129
    • /
    • 1999
  • The changes in gel characteristics of soy protein and succinylated soy protein due to various specific interaction-altering reagents which affect the formation and textural properties of gels, were studied. The reagents were added to 15% soy protein solutions prior to heat treatment. Succinylated soy protein formed harder gel without the addition of reagents. Hardly no gels were formed with urea, indicating that hydrogen bonds significantly contributed to the formation and hardness of the gel and the effects of urea on the hardness of succinylated soy protein gel were more significant. Disulfide bonds were important in the formation of hard gels whether they were succinylated or not, but the contributions of hydrophobic interactions to gel hardness were relatively insignificant. The hardness reducing effects of NaCl and NaSCN were more significant in succinylated soy protein gel. As such, electrostatic interactions were important for succinylated soy protein to form hard gel but not for unmodified soy protein.

  • PDF

Molecular Docking Studies of p21-Activated Kinase-1 (PAK1) Inhibitors

  • Balupuri, Anand;Balasubramanian, Pavithra K.;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제9권3호
    • /
    • pp.161-165
    • /
    • 2016
  • The p21-activated kinase-1 (PAK1) has emerged as a potential target for anticancer therapy. It is overexpressed in ovarian, breast and bladder cancers. This suggests that PAK1 may contribute to tumorigenesis. 4-azaindole derivatives are reported as potent PAK1 inhibitors. The present work deals with the molecular docking studies of 4-azaindoles with PAK1. Probable binding mode of these inhibitors has been identified by molecular modeling. Docking results indicated that hydrogen bonding interactions with Glu345 and Leu347 are responsible for governing inhibitor potency of the compounds. Additionally, Val284, Val328, Met344 and Leu396 were found to be accountable for hydrophobic interactions inside the active site of PAK1.

The Effect of Urea on Volumetric and Viscometric Properties of Aqueous Solutions of Poly(ethylene oxide)

  • 전상일;백경구
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권11호
    • /
    • pp.1194-1198
    • /
    • 1998
  • The density and the viscosity of aqueous PEO solutions are observed with the several concentrations of PEO at 20 ℃. The effects of urea on them are also observed. The apparent and the partial specific volumes of PEO are calculated from the density data, which result that the polymer-polymer interaction is dominating in the binary aqueous PEO solutions, while the polymer-solvent interaction is dominating in the ternary aqueous urea-PEO solutions. It is explained by the urea induced breakage of the structured water originated from the hydrophobic interactions and the binding of the urea to the PEO chain. The concentration dependence of relative viscosity and the density dependence of fluidity is also discussed with the concept of the polymersolvent and the polymer-polymer interactions of aqueous urea-PEO solutions.

Flavonoids as Novel Therapeutic Agents Against Chikungunya Virus Capsid Protein: A Molecular Docking Approach

  • E. Vadivel;Gundeep Ekka;J. Fermin Angelo Selvin
    • 대한화학회지
    • /
    • 제67권4호
    • /
    • pp.226-235
    • /
    • 2023
  • Chikungunya fever has a high morbidity rate in humans and is caused by chikungunya virus. There are no treatments available until now for this particular viral disease. The present study was carried out by selecting 19 flavonoids, which are available naturally in fruits, vegetables, tea, red wine and medicinal plants. The molecular docking of selected 19 flavonoids was carried out against the Chikungunya virus capsid protein using the Autodock4.2 software. Binding affinity analysis based on the Intermolecular interactions such as Hydrogen bonding and hydrophobic interactions and drug-likeness properties for all the 19 flavonoids have been carried out and it is found that the top four molecules are Chrysin, Fisetin, Naringenin and Biochanin A as they fit to the chikungunya protein and have binding energy of -8.09, -8.01, -7.6, and 7.3 kcal/mol respectively. This result opens up the possibility of applying these compounds in the inhibition of chikungunya viral protein.

소수성 상호작용이 HubWA 단백질의 폴딩 반응에 끼치는 영향 (Contribution of Hydrophobic Interactions to HubWA Folding Reaction)

  • 박순호
    • 대한화학회지
    • /
    • 제63권6호
    • /
    • pp.427-434
    • /
    • 2019
  • 단백질 폴딩 연구에 유용하도록 유비퀴틴 단백질의 페닐알라닌 45를 트립토판으로, 발린 26을 알라닌으로 변이시킨 HubWA 단백질을 모델로 삼아 소수성 상호작용이 단백질 폴딩 반응에 끼치는 영향을 탐구하였다. HubWA의 소수성 아미노산 중 14 개를 알라닌으로 치환한 변이 단백질을 제조하였고 이들 중 폴딩 연구에 적절한 4 개의 변이 단백질(V5A, I13A, V17A, I36A)을 얻어서 폴딩 반응의 진행 과정을 stopped-flow 장치로 측정하였다. 변이 단백질 V17A의 폴딩 반응은 HubWA와 마찬가지로 three-state 메커니즘을 따르며, V5A, I13A, I36A의 반응은 two-state 폴딩 메커니즘을 따르는 것으로 관찰되었다. 이는 HubWA 단백질의 폴딩 반응은 지엽적으로 구조적인 안정성을 지닌 부분이 존재하는 중간 단계가 먼저 형성된 다음 이들이 서로 퍼즐을 맞추는 것과 같은 방식으로 폴딩이 일어나는 collision-diffusion 메커니즘을 따르다가 소수성이 약한 아미노산으로 치환하였을 때 구조적인 안정성을 지닌 중간 단계가 관찰되지 않지만 폴딩 핵의 형성과 핵 주위로 native 구조가 형성되는 반응이 짝지어서 일어나는 nucleation-condensation 메커니즘으로 전환되는 것으로 해석되었다. 이러한 관찰은 단백질의 폴딩 경로는 지엽적인 구조의 안정성에 따라 서로 다른 메커니즘을 띨 수 있음을 시사한다.

Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1)

  • Vetrivel, Umashankar;Muralikumar, Shalini;Mahalakshmi, B;K, Lily Therese;HN, Madhavan;Alameen, Mohamed;Thirumudi, Indhuja
    • Genomics & Informatics
    • /
    • 제14권2호
    • /
    • pp.53-61
    • /
    • 2016
  • Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.

비이온계 계면활성제 수용액이 면직물의 습윤특성에 미치는 영향 (Effect on Nonionic Surfactant Solutions on Wetting and Absorbancy of Cotton Fabrics)

  • 김천희
    • 한국의류학회지
    • /
    • 제25권8호
    • /
    • pp.1444-1452
    • /
    • 2001
  • Textile materials are frequently in contact with surfactant solutions during their manufacturing or finishing processes as well as cleaning processes in use. Liquid wetting, wicking and absorbency of textile materials, and the liquid properties, surface characteristics and pore geometry of textile materials, and the liquie-solid interactions, In this paper, 10 different nonionic surfactants, including Span 20, Twen 20, 40, 60, 80, 21, 61, 81, 65, 85, were used. The surfactants were characterized by their hydrophile-lipophile-balance (HLB) values, structures, and surface tensions. The 0.1g/dL and 1.0g/dL surfactant solutions, which were both above critical micelle concentration (CMC), were used to see the concentration effects on the wetting and absorbency of cotton fabrics. The wetting behavior and liquid retention properties of hydrophobic cotton fabrics with different nonionic surfactant solutions are reported. The contact angles are greatly decreased and the water retention values are greatly increased by adding most of the surfactants studied into the system. The extents of this effects are influenced by the characteristics of surfactants and its solutions. Hydrophilic surfactants which have low number of carbon atoms or unsaturated hydrophobe structures are more effective in improving the wetting and absorbancy of hydrophobic cotton fabrics. The water retention of hydrophobic cotton fabrics has positive relations with $cos{\theta}$, adhesion tension and work of adhesion. The 1.0g/dL surfactant solutions show similar, but slightly improved wetting and absorbency characteristics of hydrophobic cotton fabrics compared to the 0.1g/dL surfactant solutions.

  • PDF

Flexible Docking of an Acetoxyethoxymethyl Derivative of Thiosemicarbazone into Three Different Species of Dihydrofolate Reductase

  • Choi, In-Hee;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.807-816
    • /
    • 2002
  • Dihydrofolate reductases (DHFR) of human, Candida albicans and E. coli were docked with their original ligands of X-ray crystal complex using QXP (Quick eXPlore), a docking program. Conditions to reproduce the crystal structures within the root mean square deviation (rmsd) of 2.00 $\AA$ were established. Applying these conditions, binding modes and species-specificities of a novel antibacterial compound, $N^4-(2-acetoxyethoxymethyl)-2-acetylpyridine$ thiosemicarbazone (MTSC), were studied. As the results, the docking program reproduced the crystal structures with average rmsd of six ligands as 0.91 $\AA$ ranging from 0.49 to 1.45 $\AA$. The interactions including the numbers of hydrogen bonds and hydrophobic interactions were the same as the crystal structures and superposition of the crystal and docked structures almost coincided with each other. For AATSC, the results demonstrated that it could bind to either the substrate or coenzyme sites of DHFR in all three species with different degrees of affinity. It confirms the experimentally determined kinetic behavior of uncompetitive inhibition against either the inhibitor or the coenzyme. The docked MTSC overlapped well with the original ligands and major interactions were consistent with the ones in the crystal complexes. The information generated from this work should be useful for future development of antibacterial and antifungal agents.