• Title/Summary/Keyword: Hydrophobic film

Search Result 189, Processing Time 0.022 seconds

A Hydrogel Film Containing Propolis Nanoparticles as a Wound Healing Membrane

  • Kim, Jin;Kim, Yong-Moon;Kim, Dong-Woon;Lee, Ki-Young
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.175-179
    • /
    • 2012
  • It is desirable that a wound healing membrane acts as a barrier for coverage of a damaged skin and has the biological activities such as anti-inflammatory effects. In this study, we prepared the hydrogel film containing the propolis nanoparticles as a wound healing membrane. The propolis nanoparticles were prepared by incorporation of propolis into the hydrophobic core of ${\gamma}$-cyclodextrin. The incorporation efficiency of propolis in the nanoparticles was $50{\pm}2.3%$. Propolis nanoparticles observed by a scanning electron microscope (SEM) were spherical with the size of 30~40 nm. The swelling behaviors of the hydrogel film containing propolis nanoparticles showed a similar pattern with the hydrogel film without propolis nanoparticles. The cumulative amount of propolis released from the hydrogel film containing propolis nanoparticles in the buffer of pH 7.4 and 5.5 was $86.0{\pm}2.0%$ and $64.6{\pm}1.0%$ of total propolis loaded in the hydrogel film within 9 h, respectively. These results provide a rationale for studying wound healing application of the hydrogel film containing propolis nanoparticles in a clinical setting.

A Study on the Preparation of Dextran Film and Its Modification (덱스트란 필름의 제조 및 개질에 관한 연구)

  • 김성현;김병훈;김도만;조동련
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.778-784
    • /
    • 2002
  • Chemical modification of a dextran film to improve its physical properties was carried out by addition of plasticizers and crosslinking agents. Moreover, low-temperature plasma treatment with acetylene gas was done. The dextran film showed high mechanical strength but was brittle and vulnerable to moisture. When plasticizer was added, it became very soft but with large reduction of mechanical strength. However, a flexible film with fairly high mechanical strength and water resistance was prepared when the film was crosslinked by adding crosslinking agent with or after the addition of plasticizer. Treatment with an acetylene plasma changed the dextran film surface from hydrophilic to hydrophobic with little influence on the bulk properties of the film.

Numerical study on pressure drop with moving contact lines of dry slug flow in a hydrophobic minichannel (소수성 미니채널 내 움직이는 접촉선을 가진 액체슬러그의 압력 강하에 대한 수치해석)

  • Jeon, Jun Ho;Park, Su Chung;Yu, Dong In;Kim, Tae Hun;Lee, Yeon Won
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.116-121
    • /
    • 2020
  • In this study, a single-phase analysis of droplet slug with different contact angles was performed based on the visualization of experimental results. Droplet slug - flowing between gases in a hydrophobic mini channel - moves with a triple contact line without a gas liquid film on the wall. The results show that the rotational flow inside the droplet occurred; this was compared and verified with the results of two-phase analysis. The pressure field shows pressure rise at the front and rear ends. The effective length - the section that satisfies the laminar flow condition - became shorter as the droplet velocity increased. The Choi's correlation for the effective length agrees with this analysis results with a slight difference. This difference is judged as the difference in the contact angle of the slug model.

Water transport through hydrophobic micro/nanoporous filtration membranes on different scales

  • Mian, Wang;Yongbin, Zhang
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.313-320
    • /
    • 2022
  • Theoretical calculation results are presented for the enhancement of the water mass flow rate through the hydrophobic micro/nano pores in the membrane respectively on the micrometer and nanometer scales. The water-pore wall interfacial slippage is considered. When the pore diameter is critically low (less than 1.82nm), the water flow in the nanopore is non-continuum and described by the nanoscale flow equation; Otherwise, the water flow is essentially multiscale consisting of both the adsorbed boundary layer flow and the intermediate continuum water flow, and it is described by the multiscale flow equation. For no wall slippage, the calculated water flow rate through the pore is very close to the classical hydrodynamic theory calculation if the pore diameter (d) is larger than 1.0nm, however it is considerably smaller than the conventional calculation if d is less than 1.0nm because of the non-continuum effect of the water film. When the driving power loss on the pore is larger than the critical value, the wall slippage occurs, and it results in the different scales of the enhancement of the water flow rate through the pore which are strongly dependent on both the pore diameter and the driving power loss on the pore. Both the pressure drop and the critical power loss on the pore for starting the wall slippage are also strongly dependent on the pore diameter.

Rapid Fabrication of Micro-nano Structured Thin Film for Water Droplet Separation using 355nm UV Laser Ablation (355 nm UV 레이저 어블레이션을 이용한 마이크로-나노 구조의 액적 분리용 박막 필터 쾌속 제작)

  • Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.799-804
    • /
    • 2012
  • Recently micro-nano structures has widely been reported to improve the performance of waterproof, heat isolation, sound and light absorption in various fields of electric devices such as mobiles, battery, display and solar panels. A lot of micro-sized holes on the surface of thin film provide excellent sound, or heat, or light transmission efficiency more than solid film and simultaneously nano-sized protrusions around micro hole increase the hydrophobicity of the surface of thin film because of lotus leaf effects as generally known previously. In this paper new rapid fabrication process with 355 nm UV laser ablation was proposed to get micro-nano structures on the surface of thin film, which have only been observed at higher laser fluence. Developed thin micro-nano structured film was also investigated the hydrophobic property by measuring the contact angle and demonstrated the possibility to apply to water droplet separation.

Auto-patterned Ag signal line by solution-processed printing on zone-defined surface.

  • Kim, Jae-Hyun;Lee, Bo-Hyun;Moon, Tae-Tyoung;Park, Mi-Kyung;Chae, Gee-Sung;Kang, In-Byeong;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1774-1777
    • /
    • 2007
  • Ultra-fine Ag line was automatically patterned to the extent of 10 ${\mu}m$ in width by slit coating on the $10^4$ $mm^2$ glass, which was pre-patterned as hydrophobic and hydrophilic zone by using hydrophobic material. The resistivity of Ag film was about $4{\mu}\;{\Omega}{\cdot}cm$.

  • PDF

Characteristics of Electrowetting of Self-assembled Monolayer and Z-Tetraol Film

  • Lin Li-Yu;Noh Dong-Sun;Kim Dae-Eun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.35-38
    • /
    • 2006
  • A study of electrowetting using an Octadecyltrichlorosilane (OTS) self-assembled monolayer (SAM) and Z- Tetraol 2000 perfluoropolyether lubricant as hydrophobic layers on Si and $SiO_2$ wafer was performed. The $SiO_2$ layer used as insulating layer was thermally grown on the silicon wafer to a thickness of 220-230 nm. The results demonstrated that the contact angle decreased from $100^{\circ}$ to $80^{\circ}$ at 28 V applied potential on $SiO_2$ wafer coated with OTS and the contact angle appeared to be reversible. However, the contact angle on the $SiO_2$ wafer coated with Z- Tetraol 2000 was not observable at 28 V applied potential. Furthermore, the contact angle on the Si wafer coated with OTS or Z- Tetraol 2000 appeared to be irreversible due to the generation of electrolysis in the droplet. It is concluded that it is feasible to use SAM as a hydrophobic layer in electrowetting applications.

Effect of Micro Casting and Plasma-etching on Polycaprolactone Film for Bone (뼈 재생을위한 폴리카프로락톤 필름에 대한 마이크로 캐스팅 및 플라즈마 에칭)

  • Lee, Jae-Yun;Yang, Ji-Hun;Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.24-24
    • /
    • 2018
  • One of the challenges in tissue engineering is the design of optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focus on the effects of nano - to micro - sized hierarchical surface. To fabricate the hierarchical surface structure on poly(${\varepsilon}$-caprolactone) (PCL) film, we employed a nano/micro-casting technique (NCT) and modified plasma process. The micro size topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-size topography and hydrophilicity of PCL film were controlled by modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed, as increasing the plasma exposure time and applied power. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface.

  • PDF

Synthesis and Microphase Separation of Biodegradable Poly($\varepsilon$-caprolactone)-Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Multiblock Copolymer Films

  • You, Jae-Ho;Choi, Sung-Wook;Kim, Jung-Hyun;Kwak, Young-Tae
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.609-613
    • /
    • 2008
  • Poly($\varepsilon$-caprolactone)-poly(ethylene glycol)-poly($\varepsilon$-caprolactone) (PCL-PEG-PCL) multiblock copolymers at various hydrophobic-hydrophilic ratios were successfully synthesized by the chain extension of triblock copolymers through isocyanate (hexamethylene diisocyanate). Biodegradable films were prepared from the resulting multiblock copolymers using the casting method. The mechanical properties of the films were improved by chain extension of the triblock copolymers, whereas the films prepared by the triblock copolymers were weak and brittle. Atomic force microscopy (AFM) of the multiblock copolymer film showed that the hydrophilic PEG had segregated on the film surface. This is consistent with the observed contact angle of the films.

Nonlinear Optical Zeolite Films for Second and Third Harmonic Generation

  • Kim, Hyun-Sung;Pham, Tung Thanh;Yoon, Kyung-Byung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1443-1454
    • /
    • 2011
  • Methods to prepare novel second-order nonlinear optical (2O-NLO) materials composed of all-silica zeolite (silicalite-1) and a series of 2O-NLO molecules having high second order hyperpolarizability constants (${\beta}$ values) are reviewed. These methods include the development of novel methods to incorporate a series of hemicyanine (HC) molecules into the channels of silicaite-1 films in uniform orientations. The first method is to incorporate HC molecules tethered with long alkyl chains (octadecyl or longer) into the silicalite-1 channels with the long alkyl chain side first through the hydrophobic-hydrophobic interaction between the long alky chains and the silicalite-1 channels. The second method is to incorporate the HC molecule tethered with a medium length alkyl chain (nonyl) into the silicalite-1 channels with the medium length alkyl chain side first through hydrophobic-hydrophobic interaction between the medium length alky chain in the photoexcited state and the silicalite-1 channels. The third method is to incorporate the HC molecule tethered with propionic acid into the silicalite-1 channels with the propionic acid side last mediated by a tetrabultylammonium cation ion-paired to the propionate unit. A method to prepare a novel third-order nonlinear optical (3O-NLO) material composed of zeolite-Y and PbS or PbSe quantum dots is also reviewed. This Account thus describes a promising new direction to which the search for highly sensitive 2O-NLO and 3O-NLO materials has to be conducted and a new direction to which zeolite research and applications have to be expanded.