• Title/Summary/Keyword: Hydrophobic Interaction

Search Result 305, Processing Time 0.027 seconds

Synthesis and Characterization of Electro-Active Poly(2-acrylamido-2-methylpropanesulfonic acid) Polymer Gel Actuator (전기활성 Poly(2-acrylamido-2-methylpropanesulfonic acid) 고분자 겔 구동기의 합성 및 특성분석)

  • 송영진;심우선;김홍경;김학길;최혁렬;김훈모;전재욱;이영관;남재도
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.736-743
    • /
    • 2001
  • An electro- active polymer (EAP) (poly(2-acrylamido-2- methyl propane sulfonic acid), PAMPS) gel crosslinked with N,N-methylenebisacrylamide (MBAA) has been prepared by free radical polymerization in aqueous solution with potassium persulfate as initiator PAMPS gel was swollen in surfactant solution to substitute surfactant for using as actuator. PAMPS gel showed a large movement in the surfactant solution by electric field. PAMPS gel showed the reversible binding and fast response rate. Bending mechanism of gel is related to the cooperative process of hydrophobic interaction, swelling-deswelling of gel and the electrostatic attraction between anode (+) and the anions of PAMPS gel. The response rate of PAMPS gel was increased as the applied potential and the degree of cross-linkage were increased. The response rate was increased as the bending cycle was repeated, but it was decreased with increasing the gel thickness.

  • PDF

Effects of the Hinge Region of Cecropin A(1-8)-Melittin 2(1-12), a Synthetic Antimicrobial Peptide on Antibacterial, Antitumor, and Vesicle-Disrupting Activity

  • Shin, Song-Yub;Kang, Joo-Hyun;Jang, So-Yun;Kim, KiI-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.561-566
    • /
    • 1999
  • CA(1-8)-ME(1-12) [CA-ME], composed of cecropin A(1-8) and melittin(1-12), is a synthetic antimicrobial peptide having potent antibacterial and antitumor activities with minimal hemolytic activity. In order to investigate the effects of the flexible hinge sequence, Gly-Ile-Gly, of CA-ME on antibiotic activity, CA-ME and three analogues, CA-ME1, CA-ME2, and CA-ME3, were synthesized. The Gly-Ile-Gly sequence of Ca-ME was deleted in CA-ME1 and replaced with Pro and Gly-Pro-Gly in CA-ME2 and CA-ME3, respectively. CA-ME1 and CA-ME3 showed a significant decrease in antitumor activity and phospholipid vesicle-disrupting ability. However, CA-ME2 showed similar antitumor and vesicle-disrupting activities, as compared with CA-ME. These results suggest that the flexibility or ${\beta}$-turn induced by Gly-Ile-Gly or Pro in the central part of CA-ME may be important in the electrostatic interaction of the N-terminus cationic ${\alpha}$-helical region with the cell membrane surface and the hydrophobic interaction of the C-terminus amphipathic ${\alpha}$-helical region with the hydrophobic acyl chains in the cell membrane. CA-ME3 exhibited lower antitumor and vesicle-disrupting activities than CA-ME and CA-ME2. This result suggests that the excessive ${\beta}$-turn structure caused by the Gly-Pro-Gly sequence in CA-ME3 seems to interrupt ion channel/pore formation in the lipid bilayer. We concluded that the appropriate flexibility or bilayer. We concluded that the appropriate flexibility or ${\beta}$-turn structure provided by the central hinge is responsible for the effective antibiotic activity of the antimicrobial peptides with the helix-hinge-helix structure.

  • PDF

Screening and Partial Purification of Haloperoxidase from Marine Actinomycetes (해양방선균으로부터 Haloperoxidase의 검색과 특성)

  • Cho, Ki-Woong
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.116-121
    • /
    • 2008
  • In my search of microbial source of novel enzymes, a marine actinomycetes, A1460, producing haloperoxidase was isolated from macroalgae from south sea, Korea and studied for physiological and biochemical properties. The haloperoxidation reaction was followed by the bromination of phenol red in the presence of hydrogen peroxide and potassium bromide. The haloperoxidase was partially purified from the cell extract with $35\sim75%$ ammonium sulfate precipitation, High-Q anion exchange chromatography, gel filtration chromatography, hydroxyapetite chromatography and hydrophobic interaction chromatography to a yield of 42% and purification fold of 70. This enzyme showed relatively high heat stability without losing 50% of activity after 1 hr incubation at $60^{\circ}C$. The highest activity was found at $45^{\circ}C$, and the optimal pH was about pH 7, but higher stability was observed at pH 8. Azide and cyanide ion showed strong inhibition at less than 1 $\mu M$ level suggesting that the enzyme was Fe ion dependent haloperoxidase.

Separation of Functionalized Heterocyclic Compounds by High Performance Liquid Chromatography(I) (고성능 액체 크로마토그래피에 의한 기능성 헤테로고리화합물의 분리(I))

  • Lee, Kwang-PilI;Cho, Yun Jin;Lee, Young Cheol
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.408-417
    • /
    • 1997
  • Normal phase or reversed phase liquid chromatographic separation of some structural isomers of functionalized heterocyclic compounds has been carried out by using several different columns and various mobile phases. The optimal experimental conditions for separation of structural isomers were found on a ternary solvent system including alcohol as a modifier. This polar modifier is preferentially adsorbed onto strong adsorption site, leaving a more uniform population of weaker site that then serve to retain the sample. This 'deactivation' of the adsorbent leads to a number of improvements in subsequent separations. The optimal mobile phase system of separation were found on normal phase on structural isomers. Retention mechanism of normal phase system was also studied depending on adsorption strength between solute and stationary phase of column. However, retention factors of reversed phase system were found on hydrophobic interaction with solvophobic effect.

  • PDF

OPTHiS Identifies the Molecular Basis of the Direct Interaction between CSL and SMRT Corepressor

  • Kim, Gwang Sik;Park, Hee-Sae;Lee, Young Chul
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.842-852
    • /
    • 2018
  • Notch signaling is an evolutionarily conserved pathway and involves in the regulation of various cellular and developmental processes. Ligand binding releases the intracellular domain of Notch receptor (NICD), which interacts with DNA-bound CSL [CBF1/Su(H)/Lag-1] to activate transcription of target genes. In the absence of NICD binding, CSL down-regulates target gene expression through the recruitment of various corepressor proteins including SMRT/NCoR (silencing mediator of retinoid and thyroid receptors/nuclear receptor corepressor), SHARP (SMRT/HDAC1-associated repressor protein), and KyoT2. Structural and functional studies revealed the molecular basis of these interactions, in which NICD coactivator and corepressor proteins competitively bind to ${\beta}-trefoil$ domain (BTD) of CSL using a conserved ${\varphi}W{\varphi}P$ motif (${\varphi}$ denotes any hydrophobic residues). To date, there are conflicting ideas regarding the molecular mechanism of SMRT-mediated repression of CSL as to whether CSL-SMRT interaction is direct or indirect (via the bridge factor SHARP). To solve this issue, we mapped the CSL-binding region of SMRT and employed a 'one- plus two-hybrid system' to obtain CSL interaction-defective mutants for this region. We identified the CSL-interaction module of SMRT (CIMS; amino acid 1816-1846) as the molecular determinant of its direct interaction with CSL. Notably, CIMS contains a canonical ${\varphi}W{\varphi}P$ sequence (APIWRP, amino acids 1832-1837) and directly interacts with CSL-BTD in a mode similar to other BTD-binding corepressors. Finally, we showed that CSL-interaction motif, rather than SHARP-interaction motif, of SMRT is involved in transcriptional repression of NICD in a cell-based assay. These results strongly suggest that SMRT participates in CSL-mediated repression via direct binding to CSL.

Studies on Thermostable Tryptophanase from a Symbiotic Thermophile

  • Chung, Yong-Joon;Beppu, Teruhiko
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.515.1-515
    • /
    • 1986
  • Thermostable tryptophanase was extracted from a thermophilie bacterium, strain T which was absolutely symbiotic with strain 5. The enzyme was purified 14.7 fold with 5.8% yield by chromatographies using ion exchange, gel filtration, and hydrophobic interaction columns, followed by high performance liquid chromatography on hydroxyapatite column. The purified enzyme has a molecular weight of approximately 210,000 estimated by gel filtration column chromatography, and the molecular weight of subunit was determined by SDS polyacrylamide gel electrophoresis to be 46,000, which indicates that the native enzyme is made of four homologous subunits. The tryptophanase was stable at 65o0 and the optimum temperature for the enzyme activity for 20 min reaction was 70$^{\circ}C$. The purified enzyme activity for 20 min ieaction was 70$^{\circ}C$. The purified enzyme catalyzed the degradation of L-tryptophan into indole, pyruvate and ammonia in the presence of pyridoxal phosphate. 5-Hydroxy-Ltryptophan, 5-methyl-DL-tryptophan, L-cysteine, S-methyl-L-cysteine, 5-methyl-DL-tryptophan, L-cysteine, S-methyl-Lcysteine, and L-serine were also used as substrates to form pyruvate. The amino acid composition of the tryptophanase was determined, and found to contain a high percentage of hydrophobic amino acids, especially in the proline content, which was much higher than that of Escherichia coli tryptophanase. In addition, the 35N-terminal amino acid sequence of the tryptophanase was completely different from that of E. coli tryptophanase.

  • PDF

Protein Binding Characteristics of Brazilin and Hematoxylin

  • Moon, Chang-Kiu;Lee, Jong-Hwoa;Ha, Bae-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.7 no.2
    • /
    • pp.77-82
    • /
    • 1992
  • In order to investigate the protein binding characteristics of braD6n and hematoxy6n to bovine semm albumin (BSA), the fluorescence probe method was adopted. Brazilin and hematoxy6n showed strong binding affinity for BSA. It was also confirmed that hematoxy6n was bound to BSA stronger than braDlin. The association constants were decreased by the elevation of concentrations of brazilin and hematoxylin. It might be due to the complex formation of the probe and both compounds or the interaction between the probe-protein complex and both compounds. The bindings between both compounds and BSA were dependent on pH and ionic strength. It seems that electrostatic force as weD as hydrophobic force is involved in the binding of braD6n and bematoxylin to BSA.

  • PDF

Purification and Characterization of Aryl Acylamidase from Pseudomonas sp. (Pseudomonas sp. Aryl Acylamidase의 정제 및 성질)

  • 황인균;방원기
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.413-419
    • /
    • 1998
  • Aryl acylamidase [EC 3.5.1.13] present in an acetaminophen-assimilating Pseudomonas sp. has been purified to a homogeneity using series of ammonium sulfate fractionation, DEAE-Sephacel anion exchange, Phenyl-Sepharose CL-4B hydrophobic, and Sephadex G-100 gel-permeation chromatography. The molecular weight, which was estimated by gel-permeation filtration and sodium dodecyl sulfate polyacylamide gel electrophoresis, was about 57 kDa and 56 kDa, respectively, indicating that this enzyme is a monomeric protein. The optimum pH was 10.5 and the optimum temperature was 40$^{\circ}C$. After incubation of the enzyme at 50$^{\circ}C$ for 30 min, residual activity of the enzyme was 34% compared to its original activity. The Km values for acetaminophen and 4'-nitroactanilide were 0.10 mM and 0.11 mM, respectively.

  • PDF

Poly(vinyl pyrrolidone) Conjugated Lipid System for the Hydrophobic Drug Delivery

  • Lee, Hye-Yun;Yu, Seol-A;Jeong, Kwan-Ho;Kim, Young-Jin
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • Water soluble polymer, poly(vinyl pyrrolidone) was chosen to conjugate with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl) (N-succinyl DPPE) to make a new drug delivery system. PVP with an amine group (amino-PVP) was polymerized by free radical polymerization. The amine group of amino-PVP was conjugated with the carboxylic group of N-succinyl DPPE. The resultant conjugate could form nanoparticles in the aqueous solution; these nanoparticles were termed a lipid-polymer system. The critical aggregation concentration was measured with pyrene to give a value of $1{\times}10^{-3}g/L$. The particle size of the lipid-polymer system, as measured by DLS, AFM and TEM, was about 70 nm. Lipophilic component in the inner part of the lipid-polymer system could derive the physical interaction with hydrophobic drugs. Griseofulvin was used as a model drug in this study. The loading efficiency and release profile of the drug were measured by HPLC. The loading efficiency was about 54%. The release behavior was sustained for a prolonged time of 12 days. The proposed lipid-polymer system with biodegradable and biocompatible properties has promising potential as a passive-targeting drug delivery carrier because of its small particle size.

Effects of Surface Roughness and Interface Wettability in a Nanochannel (나노 채널에서의 표면 거칠기와 경계 습윤의 효과)

  • Choo, Yun-Sik;Seo, In-Soo;Lee, Sang-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.5-11
    • /
    • 2010
  • The nanofluidics is characterized by a large surface-to-volume ratio, so that the surface properties strongly affect the flow resistance. We present here the results showing that the effect of wetting properties and the surface roughness may considerably reduce the friction of fluid past the boundaries. For a simple fluid flowing over hydrophilic and hydrophobic surfaces, the influences of surface roughness are investigated by the nonequilibrium molecular dynamics (NEMD) simulations. The fluid slip at near a solid surface highly depends on the wall-fluid interaction. For hydrophobic surfaces, apparent fluid slips are observed on smooth and rough surfaces. The solid wall is modeled as a rough atomic sinusoidal wall. The effects on the boundary condition of the roughness characteristics are given by the period and amplitude of the sinusoidal wall. It was found that the slip velocity for wetting conditions at interface decreases with increasing effects of surface roughness. The results show the surface rougheness and wettability determines the slip or no-slip boundary conditions. The surface roughness geometry shows significant effects on the boundary conditions at the interface.