• 제목/요약/키워드: Hydrophilicity improvement

검색결과 33건 처리시간 0.036초

Polyamide66/Polyphenylene 블렌드의 플라스마 표면처리를 통한 친수성 향상 (Hydrophilicity Improvement of Polyamide66/Polyphenylene Blends by Plasma Surface Treatment)

  • 지영연;김상식
    • 폴리머
    • /
    • 제30권5호
    • /
    • pp.391-396
    • /
    • 2006
  • 플라스마 표면처리는 접착력, 친수성, 소수성 등과 같은 고분자의 표면 특성을 개질시키기 위하여 사용되고 있다. 플라스마를 이용하여 표면을 처리하게 되면 고분자의 전체적인 물성은 유지한 채 표면의 특성만을 변화시키는 장점을 가지고 있다. 본 연구에서는 다양한 가스를 사용한 플라스마를 이용하여 상업용 Polyarlide66 (PA66) /polyphenylene(PPE) 고분자의 표면의 접착력 향상을 위해 표면 유기물 제거와 친수성으로 개질을 시도하였다. 플라스마 처리 공정 변수인 공정 파워, 처리 시간, 가스 종 들을 변화시키면서 표면을 개질하였으며 PASS/ PPE 고분자의 친수성 개질을 확인하기 위하여 접촉각 및 표면 자유에너지 변화를 측정하였다. 또한 유기물 제거를 FTIR 분석을 통하여 확인하였다. 플라스마를 이용한 표면처리 결과, 공정 파워 100 W, 처리 시간 2분, 아르곤/산소 공정가스에서 가장 낮은 접촉각(73도에서 14도)과 가장 높은 표면 자유에너지 ($44.20 mJ/m^2$에서 $50.03 mJ/m^2$)를 나타내었다.

Interaction of Different Types of Cells on Poly(L-lactide-co-glycolide) Surface with Wettability Chemogradient

  • Gilson Khang;John M. Rhee;Lee, Jin-Ho;Lee, Ilwoo;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • 제8권6호
    • /
    • pp.276-284
    • /
    • 2000
  • A wettability chemogradient on poly(L-lactide-co-glycolide) (PLGA) films was prepared by treating the films in air with corona from a knife-type electrode whose power increases gradually along the sample length. The PLGA surfaces oxidized gradually with the increasing corona power, and the wettability chemogradient was created on the surfaces as evidenced by the measurement of water contact angles and electron spectroscopy for chemical analysis. The wettability chemogradient PLGA surfaces were used to investigate the interaction of four different types of cells such as hepatoma (Hep G2), osteoblast (MG 63), bovine aortic endothelial (CPAE), and fibroblast (NIH/3T3) cells in terms of the surface hydrophilicity/hydrophobicity of PLGA. The cells adhered and grown on the chemogradient surface along the sample length were counted and observed by scanning electron microscopy. It was observed that the cells were adhered, spread, and grown more onto the positions with moderate hydrophilicity of the wettability chemogradient PLGA surface than the more hydrophobic or hydrophillic positions, regardless of the cell types used. The maximum adhesion and growth of the cells appeared at around water contact angles of 53~55°. This result seems closely related with the serum protein adsorption on the surface; the serum proteins were also adsorbed more onto the positions with moderate hydrophilicity of the wettability chemogradient surface. It seems that the wettability plays important roles for cell adhesion, spreading and growth on the PLGA surface. The surface modification technique used in this study may be applicable tothe area of tissue engineering for the improvement of tissue compatibility of films- or scaffold-type substrates.

  • PDF

질소와 암모니아 존재하에서 1 keV 에너지의 알곤과 수소 이온 조사에 의한 PTFE(polytetrafluoroethylene)의 표면형상 변화연구 (Surface Modification of Polytetrafluoroethylene by 1 keV Argon and Hydrogen Irradiated in Nitrogen and Ammonia Gas Environment)

  • 유대환;김기환;강동엽;김중수;고석근;김현주
    • 한국재료학회지
    • /
    • 제16권6호
    • /
    • pp.367-372
    • /
    • 2006
  • Polytetrafluoroethylene (PTFE) surface was modified for improving hydrophilicity by ion irradiation in environmental gas of $N_2$ and $NH_3$, respectively. The water contact angle onto the PTFE surface increased from $104{\circ}$ to over $140{\circ}$ by Ar ion irradiation in $N_2$ gas. In the case of $NH_3$ as environmental gas, there were a slight increase of contact angle from ion dose of $1{\times}10^{15}\;to\;5{\times}10^{15}\;ions/cm^2$, and its dramatic decrease to the value of 35o at the conditions of ion dose higher than $1{\times}10^{16}\;ions/cm^2$. It was found from SEM results that the surface morphology of PTFE was changed into one with filament structure after Ar ion irradiation in $N_2$ gas environments. On the contrary, Ar ion irradiation in $NH_3$ gas condition induced the PTFE surface with network structure. Hydrogen ion irradiation resulted in a little change of PTFE surface morphology, comparing with the case of Ar ion irradiation. The water contact angle of hydrogen ion irradiated PTFE surface in reactive gas decreased with increment of ion dose. Hydrogen ion irradiation could improve hydrophilicity with little change of surface morphology. It might be considered from FT-IR results that the improvement in wettability of PTFE surface by ion irradiation in $N_2$ and $NH_3$ gases could be due to the hydrophilic groups of NHx bonds.

자외선/오존 조사에 의한 Poly(butylene terephthalate) 필름의 표면 광산화 (Surface Photooxidation of Poly(butylene terephthalate) Films by UV/Ozone Irradiation)

  • 주진우;장진호
    • 한국염색가공학회지
    • /
    • 제28권2호
    • /
    • pp.63-69
    • /
    • 2016
  • Poly(butylene terephthalate)(PBT) surface was modified by UV/ozone irradiation and the effect of UV energy on the surface properties of the irradiated PBT films were characterized by the reflectance, surface roughness, contact angles, ESCA, and ATR analyses of the film surface. The surface reflectance, at the short wavelength of visible spectrum of particularly 400nm, decreased with increasing UV energy. And the irradiation roughened the film surface uniformly in the nano scale. The maximum surface roughness increased from 110nm for the unirradiated sample to 303nm at the UV energy of $10.6J/cm^2$. The surface energy of PBT film increased from $50.5mJ/m^2$ for the unirradiated PBT to $58.8mJ/m^2$ at the irradiation of $21.2J/cm^2$. The improvement in hydrophilicity was caused by the introduction of polar groups containing oxygens such as C-O and C=O bonds resulting in higher $O_{1s}/C_{1s}$. The increased dyeability of the modified film to cationic dyes may be resulted from the photochemically introduced anionic and dipolar dyeing sites on the PBT films surfaces.

Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide

  • Khosroyar, Susan;Arastehnodeh, Ali
    • Membrane and Water Treatment
    • /
    • 제9권6호
    • /
    • pp.481-487
    • /
    • 2018
  • Membrane clogging or fouling of the membrane caused by organic, inorganic, and biological on the surface is one of the main obstacles to achieve high flux over a long period of the membrane filtration process. So researchers have been many attempts to reduce membrane fouling and found that there is a close relationship between membrane surface hydrophilicity and membrane fouling, such that the same conditions, a greater hydrophilicity were less prone to fouling. Nanotechnology in the past decade is provided numerous opportunities to examine the effects of metal nanoparticles on the both hydrophilic and antibacterial properties of the membrane. In the present study the improvement of hydrophilic and antimicrobial properties of the membrane was evaluated by adding nanoparticles of titanium dioxide and copper oxide. For this purpose, 4% copper oxide and titanium dioxide nanoparticles with a ratio of 0, 30, 50, and 70% of copper oxide added to the polymeric membrane and compare to the pure polymeric membrane. Comparison experiments were performed on E. coli PTCC1998 in two ways disc and tube and also to evaluate membrane hydrophilic by measuring the contact angle and diameter of pores and analysis point SEM has been made. The results show that the membrane-containing nanoparticle has antibacterial properties and its impact by increasing the percentage of copper oxide nanoparticles increases.

자외선/오존 조사에 의한 Poly Ketone의 광산화와 염색성 (Photo-oxidation and Dyeability of Poly Ketone by UV/O3 Irradiation)

  • 김민수;장용준;장진호
    • 한국염색가공학회지
    • /
    • 제25권1호
    • /
    • pp.25-29
    • /
    • 2013
  • Poly ketone (PK) was photo-oxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PK film was investigated by the measurement of reflectance, surface roughness, contact angles, ESCA, and ATR. Reflectance, particularly at the wavelength of 380nm, decreased with increasing UV energy. And the irradiation produced nano-scale roughness on the surface uniformly. The maximum surface roughness increased from 25.3nm for the unirradiated sample to 104.9nm at the irradiation of $42.4J/cm^2$. The improvement in hydrophilicity was caused by the introduction of polar groups such as C-O and C=O bonds resulting in higher $O_{1s}/C_{1s}$. The surface energy of PK film increased from $43.3mJ/m^2$ for the unirradiated sample to $71.9mJ/m^2$ at the irradiation of $31.8J/cm^2$. The zeta potential of the UV-irradiated PK decreased with increased UV energy and the dyeability to cationic dyes increased accordingly, resulting from the photochemically introduced anionic and dipolar dyeing sites on the PK films surfaces.

식물유래 섬유자원의 재활용: 탈묵 수율 개선을 위한 신문 지료의 수화 촉진 방안 (Recycling of Plant Fiber Resources: Enhanced Hydration of Newspaper Stock for Decrease of Deinking Reject)

  • 정성현;김중호;주종훈;방재욱
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2011년도 추계학술발표회 논문집
    • /
    • pp.39-41
    • /
    • 2011
  • The recycling rate of recovered paper in Korea is the highest in the world, 92%, but remanufacturing yield is low due to the extremely poor quality of the paper. The poor quality, in turn, influences to the reject amount in deinking process. To increase the yield of old newspaper recycling process, hydrophobic degree of inorganic pigments of deinking stock must be reduced. To determine the hydrophobicity, Pitch Potential Deposit Tester (PDT) was newly designed and applied with respect to the SB latex property of various quality used in Korea; its hydrophobic degree according to Tg, gel content, charge and particle size of latex and optimum designing condition of SB latex. And below are the conclusions: 1. The reason of excessive reject from old newspaper deinking process for total amount of printed ink is loss of inorganic pigments. When lipase, a biochemical catalyst, was applied with the purpose of preventing inorganic pigments loss about more than 70% of total reject weight and promoting hydration of pulp for deinking, deinking process yield of pre flotation secondary stage increased remarkably without any changes of deinking efficiency. 2. Lipase improved deinking stock by cutting ester linkage on surface of hydrophobic materials to promote its hydration. From this, it reached the conclusion that hydration degree of stock exercises significant effect on flotation deinking process yield. 3. Inorganic alkali promotes hydration of deinking stock. But there have been needs for more fundamental measures other than inorganic alkali of promoting hydration for yield improvement. For this, this study intended to find out reasons of chemical properties change on surface of hydrophobic material by change of pH. 4. Pitch Deposit Test (PDT) was performed for understanding principle of why surface of coating flake from OMG is hydrophobic and why it becomes hydrophilic when pH of stock is alkaline. As a result of this test, it is determined that swelling property by change of pH of latex film, which were used as coating adhesive is the reason for hydrophobic change. 5. Hydrophilicity of coating flake increased with hydrophilic pigments. And as more of SB Latex adhesive was used and higher of calcium hardness of stock became, its hydrophilicity decreased. SB Latex adhesive film is reformed by mechanical friction. For having hydrophilicity under neutral pH, strong bruising action such as kneading is required. 6. Because swelling of adhesive film decreases as Tg of SB latex gets lower and mean diameter gets smaller, it shows hydrophobicity under neutral pH. This lowers hydrophilicity of coating flake, which leads to easy elimination with flotation reject on DIP process. Therefore, for improving future flotation yield, it is necessary to develop to use eco-friendly clean SB latex by raising Tg and increasing mean diameter for recycling, and as a result, to reduce excessive loss of coating flake as a reject from deinking process.

  • PDF

Water Uptake and Tensile Properties of Plasma Treated Abaca Fiber Reinforced Epoxy Composite

  • Paglicawan, Marissa A.;Basilia, Blessie A.;Kim, Byung Sun
    • Composites Research
    • /
    • 제26권3호
    • /
    • pp.165-169
    • /
    • 2013
  • This work presents the tensile properties and water uptake behavior of plasma treated abaca fibers reinforced epoxy composites. The composites were prepared by vacuum assisted resin transfer molding. The effects of treatment on tensile properties and sorption characteristics of abaca fiber composites in distilled water and salt solution at room temperature were investigated. The tensile strength of the composites increased with plasma treatment. With plasma treatment, an improvement of 92.9% was obtained in 2.5 min exposure time in plasma. This is attributed to high fiber-matrix compatibility. Less improvement on tensile properties of hybrid treatment of sodium hydroxide and plasma was obtained. However, both treatments reduced overall water uptake in distilled water and salt solution. Hydrophilicity of the fibers decreased upon plasma and sodium hydroxide treatment, which decreases water uptake.