• Title/Summary/Keyword: Hydrolytic degree

Search Result 22, Processing Time 0.022 seconds

Optimization of Peptide Production from Leg Meat of Yeonsan Ogae by High Hydrostatic Pressure and Protein Hydrolytic Enzyme and Its Characteristic Analysis (고압처리와 단백질 분해효소를 이용한 연산오계 다리육 펩타이드 생산 최적화 및 특성 분석)

  • Ha, Yoo-jin;Kim, A-Yeon;Yoo, Sun-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.182-191
    • /
    • 2016
  • The purpose of this research was the optimization of protein hydrolysate production using a commercial enzyme bromelain 1200 derived from the leg of Yeonsan Ogae by response surface methodology. Yeonsan Ogae has long been known as supporting health and high efficacy treatment. In recent days, as the efficacy of functional peptides becomes more known, optimization of oligopeptide production and its characteristics from Ogae leg meat has been performed. Response surface methodology was performed for optimization of enzyme hydrolysis. The process was varied in pressure (30 to 100 MPa), time (1 to 3 h), and substrate concentration (10 to 30%). The degree of hydrolysis, amino acids, and molecular weight of products were analyzed. The optimum conditions were determined to be a pressure of 100 Mpa, time of 3 h, and substrate concentration of 20%. Under optimized conditions, degree of hydrolysis was 34.10%. The average molecular weight of protein hydrolysates was less than 1,000 Da. Major amino acids were leucine, lysine, alanine, glutamic acid, and phenylalanine.

CHEMICAL DEGRADATION AND WEAR OF LIGHT-CURED COMPOSITE RESINS (광중합형 복합레진의 화학적 분해와 마모에 관한 연구)

  • Yang, Kyu-Ho;Jung, Hee-Kyung;Choi, Nam-Ki;Kim, Seon-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.2
    • /
    • pp.273-284
    • /
    • 2007
  • The aim of this study was to evaluate the resistance to degradation and to compare the wear resistance characteristics of four esthetic restorative materials in an alkaline solution(0.1N NaOH). The composite resins studied were Composan LCM flow(Promedica, Germany). Clearfil ST(Kuraray medical, Japan), Durafi VS1(Heraeus Kulzer, U.S.A), Point 4(Kerr, U.S.A). The results were as follows : 1. The mass loss of each brand was $1.02{\sim}6.04%$ and highest value in Durafil VS$(6.04{\pm}0.29%)$. 2. The sequence of the degree of degradation layer depth was in descending order by Durafil VS, Clearfil ST, Point 4 and Composan LCM flow. There were significant differences between Point 4, Composan LCM flow and the others (p<0.001). 3. The sequence of the Si loss was in descending order by Clearfil ST, Durafil VS, Composan LCM flow and Point 4. There were significant differences among the materials (p<0.001). 4. On SEM, destruction of bonding between matrix and filler and on CLSM, the depth of degradation layer of specimen surface was observed. 5. The sequence of maximum wear depth was in descending order by Durafil VS, Composan LCM flow, Point 4 and Clearfil ST. There were no significant differences among the materials (p>0.001) 6. The correlation coefficient between Si loss and degradation layer depth (r=0.892, p<0.01) and Si loss and mass loss(r=0.736, p<0.01) were relatively high. These results indicate that hydrolytic degradation, wear and another factor may consider as evaluation factors of composite resins.

  • PDF

WEAR AND CHEMICAL DEGRADATION OF ESTHETIC RESTORATIVE MATERIALS (차세대 레진 개발을 위한 광중합형 복합레진의 화학적 분해와 마모에 관한 연구)

  • Yang, Kyu-Ho;Choi, Eun-Young;Choi, Nam-Ki;Kim, Seon-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.557-568
    • /
    • 2005
  • The aim of this study was to evaluate the resistance to degradation and to compare the wear resistance characteristics of four esthetic restorative materials in an alkaline solution(0.1N NaOH). The brands studied were MetafilCX(Sun medical, Japan) Solitaire 2(Heraeus Kulzer, USA), Composan LCM(Promedica, Germany), DenFil(Vericom, Korea). The results were as follows: 1. The mass loss of each brand was 0.74~7.94% and highest value in Metafil($7.94{\pm}0.39%$). 2. The sequence of the degree of degradation layer depth was in descending order by Metafil, Solitaire 2, DenFil, Composan LCM. There were significant differences between Metafil and the others(p<0.05). 3. The sequence of the Si loss was in descending order by Metafil, Solitaire 2, Composan LCM, DenFil. There were significant differences among the materials(p<0.05). 4. On SEM, destruction of bonding between matrix and filler and on CLSM, the depth of degradation layer of specimen surface was observed. 5. The sequence of maximum wear depth was in descending order by Metafil, Solitaire 2, Composan LCM and DenFil. There were significant differences among the materials(p<0.05). 6. The correlation coefficient between Si loss and degradation layer depth (r=0.491, p<0.05) and Vicker's hardness number and maximum wear depth (r=-0.942, p<0.05) were relatively high. These results indicate that hydrolytic degradation and wear may consider as a evaluation factors of composite resins.

  • PDF

Survey on the Chitinolytic Activity from Some Animals for the Industrial Utilization (공업적 이용을 위한 동물성 키틴분해효소의 탐색)

  • Han, Beom-Ku;Lee, Woo-Jin;Jo, Do-Hyun
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.95-100
    • /
    • 1997
  • This study was aimed to survey inexpensive and reliable sources of chitinase from the animal origin. The stomach and its content of the broiler, the cod, the yellowtail and ${\beta}-glucuronidase$ from snail gut showed a considerable chitinolytic activity, while those of the bas didn't have any detectable activity. These crude enzymes was found to have both endo- and exochitinase activity. The effects of pH and temperature on the enzyme activity were variable. The hydrolytic products of colloidal chitin by the enzyme preparation from the broiler and the cod were chitooligomers having the degree of polymerization between 3 and 5. Furthermore we observed the chitosanolytic activity from these enzymes. In the degradation of chitosan the chyme of the broiler had the highest activity and ${\beta}-glucuronidase$ from snail gut followed. On the basis of the fact that the by-product of the broiler was not only commercially available but also the most potent in the endochitinase activity and the lowest in the exochitinase activity, we conclude that the gizzard and its chyme are considered as the most suitable source of the industrial chitinase among animals studied in this paper.

  • PDF

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

Recovery of Protein Hydrolysate from Hoki (Johnius belengeri) Frame with Tuna Pyloric Caeca Crude Enzyme and Its Functionalities (참치 유래 조효소를 이용한 민태(Johnius belengeri) Frame으로부터 단백질 가수분해물의 회수 및 그 기능성)

  • Jeon, You-Jin;Lee, Byoung-Jo;Byun, Hee-Guk;Kim, Jong-Bae;Kim, Se-Kwon
    • Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.49-57
    • /
    • 1999
  • Enzymatic hydrolysis with tuna pyloric caeca crude enzyme(TPCCE) was performed to recover a protein hydrolysate from hoki frame, fish processing by-product. Optimum hydrolytic conditions were pH 10.0, temperature $50^{\circ}C$, and incubation time 12 hrs, and then the degree of hydrolysis was about 60%. The yield of the hydrolysate from hoki frame by enzymatic hydrolysis was approximately 77% on a dry weight basis. The prepared protein hydrolysates were also fractionated through a series of 30, 10, 5 and 1 kDa molecular weight cut-off (MWCO) membranes in order to investigate the effect of their functionalities according to the difference of their molecular size. As the result of studying functionalities of the hydrolysates, 1 K hydrolysate showed the highest solubility over all pHs, and 30 and 10 K hydrolysate showed more excellent emulsifying property and whippability than the other hydrolysates.

  • PDF

Continuous Hydrolysis of Tuna Boiled Extract using Proteinase from Tuna Pyloric Caeca in Membrane Reactor (막반응기에서 참치 유문수 유래 단백질 분해효소를 이용한 참치 자숙액의 연속적 가수분해)

  • KIM Se-Kwon;Byun Hee-Guk;Jeon You-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.127-133
    • /
    • 1999
  • The purpose of this study was to determine the optimum hydrolysis conditions for the production of enzymatic hydrolysate from tuna boiled extract (TBE) using membrane (molecular weight cut off 10,000Da) reator. The tuna pyloric caeca crude enzyme (TPCCE) was identified as the most suitable enzymes for the hydrolysis of TBE. The optimum hydrolysis conditions of TBE in the batch reactor were $40^{\circ}C$, pH 9 and substrate to TPCCE ratio 50 (w/w). For 6hr under the above conditions, $70\%$ of the total amount of initial TBE was hydrolysed. The optimum hydrolysis conditions of TBE in the membrane reactor were $40^{\circ}C$, pH 9, enzyme 0,1 g/$\ell$, volume 1$\ell$ and substrate to enzyme ratio 100(w/w). The degree of hydrolysis of TBE was above $60\%$ for 3 hr. The TBE hydrolysate were prepared with $5\%$ TBE solution under the optimum hydrolytic conditions in the membrane reactor

  • PDF

CHEMICAL DEGRADATION OF LIGHT-CURED DENTAL COMPOSITE RESINS (수종 치과용 광중합형 복합레진의 화학적 분해)

  • Yang, Kuy-Ho;Choi, Nam-Ki;Park, Mi-Ran;Park, Eun-Hae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.403-411
    • /
    • 2001
  • The aim of this study was to evaluate the resistance to degradation of four commercial composite resins in an alkaline solution. The brands studied were Unifil(GC, Japan), Palfique(Tokuyama Japan). Definite$Degussa-H\ddot{u}ls$ AG, Germany). Revolution(Kerr, U.S.A.). Preweighed discs of each brand were exposed 0.1N NaOH solution at $60^{\circ}C$. After 14 days they were removed, neutralized with HCl, washed with water and dried. Resistance to degradation was evaluated on the basis of following parameters: (a) mass loss(%) - determined from pre-and post-exposed specimen weights; (b) Si loss(ppm) - obtained from ICP-AE analysis of solution exposed to specimens; and (c) degradation depth$({\mu}m)$ - measured microscopically (SEM) from polished circular sections of exposed specimens. The results were follows: 1. The mass loss of Unifil was 3.21%, it was the highest of materials. But, there was no significant difference among the materials. 2. The degree of degradation layer depth was $107.69\sim47.40{\mu}m$, the sequence of the degree pf degradation layer depth was in descending order by Unifil, Palfique, Revolution, Definite. There was significant difference among the materials except Palfique and Definite. 3. The Si loss of Paltique was 8940.0ppm, it was the highest. There was significant difference among the materials, except Revolution and Definite(p<0.05). 4. The correlation coefficient between mass loss and degradation depth was relatively high(r = 0.06, p<0.05). 5. There was no significant coefficient correlation between Si loss and mass loss, and/or the degree of degradation layer depth and Si loss. 6. When observed with SEM, destruction of bonding is observed between resin matrix and filler. Above results suggested that the hydrolytic degradation is considered as evaluation factor of composite resins.

  • PDF

HYDROLYTIC DEGRADATION OF POSTERIOR RESIN RESTORATIVE MATERIALS (구치부 레진 수복 재료의 가수분해)

  • Yang, Kuy-Ho;Park, Mi-Ran;Choi, Nam-Ki;Park, Eun-Hae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.673-682
    • /
    • 2001
  • The use of resin composites has continued to increase over the last several years. In spite of their growing popularity, composites continue to exhibit a number of undesirable characteristics. One of the major deficiencies of composite restorative resins is their inadequate resistance to wear. Of the multitude of factors that have been associated with wear, subsurface degradation within the restoration is considered to be one. The aim of this study was to evaluate the resistance to degradation of four commercial composite resins in an alkaline solution. This solution with a high concentration of hydroxyl ions is a convenient medium for accelerated degradation of silane coupling and filler particles. The brands studies were Definite($Degussa-H\ddot{u}ls$ AG, Germany), Prodigy(Kerr, USA), Pyramid(Bisco, USA) and Synergy(Coltene, Swiss). Preweighed discs of each brand were exposed to 0.1N NaOH solution at $60^{\circ}C$. After 14 days they were removed, neutralized with HCl, washed with water and dried. Resistance to degradation was evaluated on the basis of following parameters : (a) mass loss(%)-determined from pre-and post-exposed specimen weights : (b) Si loss(ppm)-obtained from ICP-AE analysis of solution exposed to specimens; and (c) degradation $depth({\mu}m)$-measured microscopically (SEM) from polished circular sections of exposed specimens. The results were follows: 1. Mass loss of Synergy was $1.24{\pm}0.002%$, it was the highest, there was no significant difference among the materials. 2. The degree of degradation layer depth of Synergy was $107.83{\pm}2.52{\mu}m$, it was the highest, there was no significant difference among any other materials than Synergy. 3. There was no difference among the four materials in Si loss. 4. The correlation coefficient between mass loss and degradation depth was relatively high(r=0.06, p<0.05). 5. There was no coefficient correlation between Si loss and mass loss, the degree of degradation layer depth and Si loss. 6. When observed with SEM, destruction of bonding is observed between resin matrix and filler.

  • PDF

Characteristics of Soy Protein Hydrolysates with Enzymes Produced by Microorganisms Isolated from Traditional Meju (전통 메주 유래 미생물이 생산하는 효소에 의한 대두단백 분해물의 특성)

  • 정낙현;신용서;김성호;임무현
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.80-88
    • /
    • 2003
  • In order to establish the enzymatic hydrolysis system improving of taste and flavor in the preparation of soy protein hydrolysates using the enzymes with excellent hydrolytic ability and different hydrolysis pattern of soy protein, Degree of hydrolysis(DH) and surface hydrophobicity under the optimal conditions of enzyme reaction, hydrolysis patterns by the SDS electrophoresis and sensory evaluation of soy protein hydrolysates by enzyme reactions were investigated. Four enzyme reactions were highly activated at pH 7.0, 45$^{\circ}C$ under the optimal conditions. As result of changes on the pattern of soy-protein hydrolysates by SDS-electrophoresis, high molecular peptides of hydrolysates by No. 5(Mucor circinelloides M5) and No. 16(Bacillus megaterium B16) enzymes were slowly decrease and 66KD band of these were remained after 3hours reaction. Production of low molecular peptides of hydrolysates by No. 4(Aspergillus oryzae M4) and No. 95(Bacillus subtilis YG 95) enzymes were remarkably detected during the proceeding reactions. As results of HPLC analysis, low molecular peptides of 15∼70KD were mainly appeared during the proceeding enzyme reactions. And, the more DH was increased, the more SDS-surface hydrophobicity was decreased. Hydrolysates by No. 4 enzyme was not only the highest DH of all hydrolysates, but the strongest bitter taste in a sensory evaluation. Sweat taste among the hydrolysates showed little difference. But, when combinative enzymes were treated, combinative enzyme of No. 4(Aspergillus oryzae M4)and No. 16(Bacillus megaterium B16) showed the strongest sweat taste. In conclusion, we assumed that it will be possible to prepare the hydrolysates having functionality when soy-protein were hydrolyzed by these specific enzymes.