• Title/Summary/Keyword: Hydrolysis reaction

Search Result 998, Processing Time 0.027 seconds

The Catalytic Effects of o-Iodosobenzoate Ion on Hydrolysis of p-Nitrophenylvalate in ETAMs Solution (ETAMs 용액내에서 p-Nitrophenylvalate의 가수분해반응에 미치는 o-Iodosobenzoate Ion의 촉매효과)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.119-126
    • /
    • 2011
  • In this study, reaction model and reactions rate accelerated by o-iodosobenzoate ion(IB$^{\ominus}$) on hydrolysis reaction of p-nitrophenyl valate(NPV) using ethyl tri-octyl ammonium mesylate(ETAMs) for quaternary ammonium salts, the phase transfer catalysis(PTC) reagent, were investigated. The effect of IB$^{\ominus}$ on hydrolysis reaction rate constant of NPV was weak without ETAMs solutions. Otherwise, in ETAMs solutions, the hydrolysis reactions exhibit higher first order kinetics with respect to the nucleophile, IB$^{\ominus}$, and ETAMs, suggesting that reactions are occurring in small aggregates of the three species including the substrate(NPV), whereas the reaction of NPV with OH$^{\ominus}$ is not catalyzed by ETAMs. Different concentrations of NPV were tested to measure the change of rate constants to investigate the effect of NPV as substrate and the results showed that the effect was weak. This means the reaction would be the first order kinetics with respect to the nucleophile. This behavior for the drastic rate-enhancement of the hydrolysis is referred as 'Aggregation complex model' for reaction of hydrophobic organic ester with o-iodosobenzoate ion(IB$^{\ominus}$) in hydrophobic quarternary ammonium salt(ETAMs) solutions.

Characterization of Levan Hydrolysis Activity of Levansucrase from Zymomonas mobilis ATCC 10988 and Rahnella aquatilis ATCC 33071

  • Jang, Ki-Hyo;Kang, Soon-Ah;Kim, Chul-Ho;Lee, Jae-Cheol;Kim, Mi-Hyun;Son, Eun-Wha;Rhee, Sang-Ki
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.482-484
    • /
    • 2007
  • To investigate production and hydrolysis of levan, the levansucrase enzymes from Zymomonas mobilis ATCC 10988 and Rahnella aquatilis ATCC 33071 were used. The optimum temperature of R. aquatilis levansucrase for levan formation was $37^{\circ}C$, whereas that of Z. mobilis was $4^{\circ}C$, under the experimental conditions. Both levansucrases also catalyzed the reverse levan hydrolysis reaction. Levan hydrolysis reactions from both levansucrases were temperature dependent; high temperature ($20^{\circ}C$) was more favorable than low temperature ($4^{\circ}C$) by 4 times. Fructose was the only product from hydrolysis reaction by both levansucrases, showing that both levansucrases mediated the hydrolysis reaction of exo-enzyme acting. In both enzymes, initial levan hydrolysis activity was almost accounted to 1% of initial levan formation activity. The results allow the estimation of the fructose release rate in enzyme processing conditions.

Effectiveness of Enzymatic Hydrolysis on Polyamide Fabric

  • Kim, Hye Rim;Seo, Hye Young;Song, Ah Reum
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.7
    • /
    • pp.962-971
    • /
    • 2013
  • We compared the effectiveness of amidase (amano acylase, AA) and an endopeptidase, (trypsin, TR) in modifying the hydrophobicity of polyamide fabric. We evaluated the number of amino groups released into the reaction mixture in order to optimize the treatment conditions. We found that a large number of amino groups were released into the reaction mixture due to the cleavage of amide bonds by AA hydrolysis; however, the TR hydrolysis exhibited a relatively lower activity compared to AA hydrolysis. In AA and TR hydrolysis, significant differences were observed in the K/S values and moisture regain. Amide bonds in polyamide fabric were hydrolyzed by AA hydrolysis effectively. Compared to TR, AA formed more hydrolysis product (amino groups) on the fabric surface. Thus, the hydrophobicity of polyamide fabric was modified using AA hydrolysis (as verified by the wettability test) without any deterioration of fiber strength.

method of Using Hydrolysis to Increase Paclitaxel Yield from plant Cell Culture (가수분해방법에 의한 식물세포배양여액으로부터 Paclitaxel 수율증가)

  • 김진현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.402-404
    • /
    • 2000
  • This work is method that uses a hydrolysis for increasing yield of paclitaxel in plant cell cultures. The best pH is 3.0 to obtain a maximum yield at fixed reaction temperature and time t pH 3.0 reaction temperature 80$^{\circ}C$ and reaction time 8 hr give the highest yield which is three time of control. This is very simple and efficient method to increase paclitaxel yield in plant cell cultures.

  • PDF

Formation and Stabilization of Raphasatin and Sulforaphene from Radish Roots by Endogenous Enzymolysis

  • Kim, Jae-Won;Kim, Mi-Bo;Lim, Sang-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • The biologically active compounds raphasatin and sulforaphene are formed during the hydrolysis of radishes by an endogenous myrosinase. Raphasatin is very unstable, and it is generated and simultaneously degraded to less active compounds during hydrolysis in aqueous media. This study determined the hydrolysis conditions to maximize the formation of raphasatin and sulforaphene by an endogenous myrosinase and minimize their degradation during the hydrolysis of radish roots. The reaction parameters, such as the reaction medium, reaction time, type of mixing, and reaction temperature were optimized. A stability test for raphasatin and sulforaphene was also performed during storage of the hydrolyzed products at $25^{\circ}C$ for 10 days. The formation and breakdown of raphasatin and sulforaphene in radish roots by endogenous enzymolysis was strongly influenced by the reaction medium, reaction time, and type of mixing. The production and stabilization of raphasatin in radishes was efficient in water and dichloromethane with shaking for 15 min at $25^{\circ}C$. For sulforaphene, the favorable condition was water as the reaction medium without shaking for 10 min at $25^{\circ}C$. The maximum yields of raphasatin and sulforaphene were achieved in a concurrent hydrolysis reaction without shaking in water for 10 min and then with shaking in dichloromethane for 15 min at $25^{\circ}C$. Under these conditions, the yields of raphasatin and sulforaphene were maximized at 12.89 and $1.93{\mu}mol/g$ of dry radish, respectively. The stabilities of raphasatin and sulforaphene in the hydrolyzed products were 56.4% and 86.5% after 10 days of storage in water and dichloromethane at $25^{\circ}C$.

Enzymatic Hydrolysis of Beef Tallow (효소에 의한 우지의 가수분해 반응)

  • 김인호;박태현
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.377-382
    • /
    • 1991
  • Reef tallow was hydrolyzed with lipase under the conditions of liquid state and solid state. Lipase OF 360 was used for that purpose, and the lipase had the maximum activity when the olive oil was used as a substrate at pH 6 and $37^{\circ}C$. Beef tallow was dispersed by an agitator to perform a liquid enzymatic reaction. Water content, reaction temperature, and enzyme amount were varied as parameters affecting hydrolysis percentage. Ninety three percents of tallow were hydrolyzed at the following conditions: water content 80% w/w, temperature $37^{\circ}C$, and enzyme amount 200 unitlg tallow. In order to conduct a solid phase enzymatic reaction, sonication was employed for pretreating tallow with the enzyme solution. Molten tallow was sonified with the enzyme solution, and solidified by lowering temperature. And then hydrolysis reaction proceeded at $30^{\circ}C$. Sonication intensity and time were varied to control hydrolysis percentage. Optimum values of the intensity and the time were found to exist since the hydrolysis percentage did not increase further according to the increases of the intensity and the time.

  • PDF

Scale- Up of Water-Oil Hydrolysis System

  • Hur, Byung-Ki;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.773-777
    • /
    • 1999
  • Scale-up experiments for hydrolysis of beef tallow, fat, and palm kernel with lipase derived from Candida cylindracea were carried out in 1-1, 100-1, and 10,000-1 reactors. The optimum agitation speed for the hydrolysis of the 1-1 reactor was investigated and found to be 350rpm, and this was a basis for the scale-up of agitation speed. The hydrolysis system in this work was the oil-water system in which the hydrolysis seems to process a heterogeneous reaction. An emulsion condition was the most important factor for determining the reaction rate of hydrolysis. Therefore, the scale-up of agitation speed was performed by using the power n = 1/3 in an equation of the rules of thumb method. The geometrical similarity for scaling-up turned out to be unsatisfactory in this study. Thus, the working volume per one agitator was used for the scale-up. In the case of scale-up from a 1-1 reactor to a 100-1 reactor, the hydrolysis of palm kernel was very much scaled-up by initiating the rules of thumb method. However, the hydrolysis of fat and beef tallow in a 100-1 reactor was a little higher than that of the 1-1 reactor because of the difference of geometrical similarity. The scale-up of hydrolysis from the 100-1 reactor to the 10,000-1 reactor was improved compared to that of the 1-1 to 100-1 reactor. The present results indicated that the scale-up of hydrolysis in the oil-water system by the rules of thumb method was more satisfactory under the condition of geometrical similarity. Even in the case where geometrical similarity was not satisfactory, the working volume per one agitator could be used for the scale-up of a heterogeneous enzyme reaction.

  • PDF

Alkaline Hydrolysis of Alkyl Alkylphosphinate and Alkyl Phenylphosphinates (알킬 알킬포스피네이트와 알킬 페닐포스피네이트들의 염기성 가수분해)

  • Yang, Il-Woo;Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.161-166
    • /
    • 2002
  • The alkaline hydrolysis of alkyl alkylphosphinate and alkyl phenylphosphinates have been studied at room temperature. The hydrolysis proceeded as an one-stage reaction($S_{N}$ 2) and involved a nucleophilic attack of the hydroxyl ion on the phosphorus atom. And the length of the alkoxy group in the phosphinate esters affected on hydrolysis. Therefore, the alkaline hydrolysis may be used as a method to decompose the chemical agents.

The Hydrolysis of Tripalmitin by Lipase (리파제에 의한 트리팔미틴의 가수분해)

  • Lee, Nan Hyung;Rhyu, Hyo Sun;Kim, Sung Reon
    • Textile Coloration and Finishing
    • /
    • v.8 no.4
    • /
    • pp.25-30
    • /
    • 1996
  • This study was carried out to examine the effect of lipase on the removal of tripalmitin in the various conditions of washing. The relations between the removal and the hydrolysis of tripalmitin by lipase were discussed. The hydrolysis characteristics of lipase were examined by a colorimetric determination of liberated fatty acids as a new assay of lipase in reverse micelies. The hydrolysis of tripalmitin by lipase was increased with the increase of reaction time and reaction above lipase concentration 150mg/l pH at reaction temperature 4$0^{\circ}C$.

  • PDF

Preparation of Porous Silica-Pillared Montmorillonite: Simultaneous Intercalation of Amine-Tetraethylorthosilicate into H-Montmorillonite and Intra-Gallery Amine-Catalyzed Hydrolysis of Tetraethylorthosilicate

  • Gwon, O Yun;Park, Gyeong Won;Jeong, Sun Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.678-684
    • /
    • 2001
  • Porous silica-pillared montmorillonites were prepared by simultaneous intercalation of dodecylamine-TEOS [tetraethylorthosilicate, Si(OC2H5)4] into the H-montmorillonite and intragallery amine-catalyzed hydrolysis of TEOS. Mixtures of the H-montmorillonite, dodecylamine and TEOS at molar ratios of 1 : 2 : 15-30 and 1 : 2-6 : 20 resulted to swollen and viscous gel once at room temperature, allowing intercalation compounds which dodecylamine and TEOS were simultaneously intercalated into interlayer of H-montmorillonite. The hydrolysis of the gallery TEOS was conducted in water solution for 40 min at room temperature, affording siloxane-pillared H-montmorillonite. Calcination of samples at 500 $^{\circ}C$ in air resulted in silica-pillared montmorillonite with large specific surface areas between 403 and 577 m2 /g, depending on the reaction stoichiometry. The reaction at H-montmorillonite : dodecylamine : TEOS reaction stoichiometries of 1 : 2 : 15 and 1 : 4 : 20 resulted in high specific surface areas and mesopores with a narrow pore size distribution. Result indicates that the intragallery-amine catalyze the hydrolysis of gallery-TEOS and simultaneously have a role of gallery-templated micellar assemblies.