• Title/Summary/Keyword: Hydrolysis rate constant

Search Result 79, Processing Time 0.026 seconds

Hydrolytic Behavior of Vinylsulfonyl Reactive Dyes - Easiness of Dimerization -

  • Kim, In Hoi
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • The aim of the current study is to identify the dimerization and decomposition kinetics of the F-$D_M$ type. The regeneration of F-VS from $F_iF_j-D_M$ or the reversibility of the dimerizations were investigated. The order of real rate constants of the dimerization('$K_D{^{ij}}$) would seem to be similar to that of rate constants of a dimerization($K_D{^{ij}}$) for VS dyes at a given pH because of the constancy of the equilibrium constants($K_a{^j}$-value). The reverse reactions of the $D_M$ types are appeared to occur in two steps, the deprotonation of ${\alpha}$-carbon of the $D_M$ types and disproportionation. The ratio of the decomposition of the $D_M$ type to F-Hy and F-VS appears to be related with the ratio of $K_i/K_j$. Similarities were also found among various other reactions, including homo- and mixed dimerization. VS dyes undergoing fast hydrolysis have difficulty in forming a dimer. The higher the reactivity with cellulose or hydroxide ion, the smaller the dimerization. The easiness of the dimerization was thus found to be inversely proportional to the rate of hydrolysis.

Acid-Catalyzed Hydrolysis Reaction of Poly(vinyl acetate) (폴리(비닐 아세테이트)의 산촉매 가수분해 반응)

  • Park, Sang-Soo;Yoon, Hi-Sook
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.304-307
    • /
    • 2005
  • The acid-catalyzed hydrolysis reaction of poly(vinyl acetate) (PVAc) in water/acetic acid solution at $35^{circ}C$ was studied at two different solvent compositions. The mole fractions of vinyl acetate (Vac) and vinyl alcohol (VA) during the course of the reaction were determined by NMR, and the equilibrium constant $K_{eq}$ of the reaction was determined using the molar ratio of VAc to VA at the chemical equilibrium. $K_{eq}$ was 0.75 (${\pm}0.01$) when the VAc mole faction at the equilibrium was 0.78 (${\pm}0.01$) and it was 0.69 (${\pm}0.01$) when the VAc mole fraction was 0.57 (${\pm}$0.02). The reaction was found to be a pseudo 1-st order reaction with the rate coefficient at $3.4{\times}10^{-6}/sec$.

Acetylcholinesterase(AChE)-Catalyzed Hydrolysis of Long-Chain Thiocholine Esters: Shift to a New Chemical Mechanism

  • Jung, Dai-Il;Shin, Young-Ju;Lee, Eun-Seok;Moon, Tae-sung;Yoon, Chang-No;Lee, Bong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • The kinetic and chemical mechanisms of AChE-catalyzed hydrolysis of short-chain thiocholine esters are relatively well documented. Up to propanoylthiocholine (PrTCh) the chemical mechanism is general acid-base catalysis by the active site catalytic triad. The chemical mechanism for the enzyme-catalyzed butyrylthiocholine(BuTCh) hydrolysis shifts to a parallel mechanism in which general base catalysis by E199 of direct water attack to the carbonyl carbon of the substrate. [Selwood, T., et al. J. Am. Chem. Soc. 1993, 115, 10477- 10482] The long chain thiocholine esters such as hexanoylthiocholine (HexTCh), heptanoylthiocholine (HepTCh), and octanoylthiocholine (OcTCh) are hydrolyzed by electric eel acetylcholinesterase (AChE). The kinetic parameters are determined to show that these compounds have a lower Michaelis constant than BuTCh and the pH-rate profile showed that the mechanism is similar to that of BuTCh hydrolysis. The solvent isotope effect and proton inventory of AChE-catalyzed hydrolysis of HexTCh showed that one proton transfer is involved in the transition state of the acylation stage. The relationship between the dipole moment and the Michaelis constant of the long chain thiocholine esters showed that the dipole moment is the most important factor for the binding of a substrate to the enzyme active site.

Stability of pipethanate hydrochloride in aqueous solution

  • Kim, Chonng-Kook;Cha, Hyun-Sook
    • Archives of Pharmacal Research
    • /
    • v.4 no.2
    • /
    • pp.109-115
    • /
    • 1981
  • In the present investigation, an attempt has been made to apply the methods of classical chemical kinetics to the hydrolytic reaction of pipethanate hydrochloride. By successively keeping all but one variable essentially constant, it has been possible to resolve the overall effect of the individual contributing factors. Since nearly all commercial pipethanate preparations are formulated with antacid, studies were made at several constant hydrogen ion concentration ranging pH 0.4 to 7.5. Rate measurement was also carried out in temperature ranging from $25^{\circ}C$ to $60^{\circ}C$. The hydrolysis of pipethanate is found to be of first order with respect to pipeethanate concentration over an experimental range of hydrogen ion concentration (pH 0407.5). The apparent activation energy(Ea) at pH 7.5 is 18.30 Kcal/mole and the frequency factor is $1.1408 {\times}10^{9}sec^{-1}$. The rate of the hydrolysis has a minimum at pH 2.5-3.5. In this region the half-life of pipethanate was about15.3 days at $60^{\circ}C$. The catalytic effect of water was found to be $K_{H_2O}$ = $3.16{\times}10^{-5}min^{-1}$ at $60^{\circ}C$. The catalytic constants of the hydroxyl ions and hydrogen ions at $60^{\circ}C$ were also found to be $K_{OH}$ = $4.5519{\times}10^{-5}min^{-1}$ and $K_{H}+$ = $1.1568{\times}10^{-2}min^{-1}$, respectively. This reaction appears to be primarily base catalyzed hydrolysis and pipethanate is relatively reluctant toward acid catalyzed hydrolysis. A positive primary salt effect was noted in the solution of phpethanate at pH 7.5 and at $60^{\circ}C$.

  • PDF

Irreversible Thermoinactivation Mechanisms of Subtilisin Carlsberg

  • Dong Uk Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.600-604
    • /
    • 1989
  • In order to find the rational methods for improving the thermal stability of subtilisin Carlsberg, the mechanisms of irreversible thermoinactivation of the enzyme were studied at $90^{\circ}C.$ At pH 4, the main process was hydrolysis of peptide bond. This process followed first order kinetics, yielding a rate constant of $1.26\;{\times}\;10^{-1}h^{-1}$. Hydrolysis of peptide bond of PMS-subtilisin occurred at various sites, which produced new distinct fragments of molecular weights of 27.2 KD, 25.9 KD, 25.0 KD, 22.3 KD, 19.0 KD, 17.6 KD, 16.5 KD, 15.7 KD, 15.0 KD, 13.7 KD, and 12.7 KD. Most of the new fragments originated from the acidic hydrolysis at the C-side of aspartic acid residues. However 25.0 KD, 15.7 KD, and 13.7 KD which could not be removed in purification steps stemmed from the autolytic cleavage of subtilisin. The minor process at pH 4 was deamidation at asparagine and/or glutamine residues and some extend of aggregation was also observed. However, the aggregation was main process at pH 7 with a first order kinetic constant of $16 h^{-1}.$ At pH 9, the main process seemed to be combination of deamidation and cleavage of peptide bond.

Stability of Dicyclomine HCl in Aqueous Solution ( II ) (수용액(水溶液)에서의 염산디싸이클로민의 안정성(安定性) (제 2 보)(第 2 報))

  • Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.14 no.3
    • /
    • pp.131-135
    • /
    • 1984
  • The effect of pH and magnesium ion on the hydrolysis of dicyclomine HCl was investigated by comparing the rate constant and activation energy. The hydrolysis of dicyclomine HCl was acid-base catalytic reaction and the most stable range of pH was $3{\sim}5$. The magnesium ion accelerated the hydrolysis of dicyclomine HCl in aqueous solution.

  • PDF

Determination of Hydrolysis Rate Constants on Phosphamidon and Profenofos (Phosphamidon과 Profenofos의 가수분해속도 상수의 측정)

  • Min, Kyung-Jin;Ha, Young-Duck;Seo, Seol;Cha, Chun-Geun;Park, Jang-Woo;Lee, Seung-Gon
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.2
    • /
    • pp.144-150
    • /
    • 2000
  • The present study was peformed to determine the hydrolysis rate constants and degradation products of phosphamidon and proffnofos by the OECD method. Hydrolysis rate constants of phosphamidon in pH 4, pH 7, and pH 9 buffer solutions at 25 and 40$^{\circ}$C were 0.0020, 0.0022, 0.0049 and 0.0040, 0.0050, 0.0150, respectively. Hydrolysis rate of phosphamidon was accelerated by temprerature change under same pH conditions, and half-life of phosphamidon in pH 9 at 40。C was 3 times faster than that at 25。C. Hydrolysis rate of phosphamidon in alkaline solution(pH 9) was 2~4 times faster than that in acidic solution(pH 4) and neutral solution(pH 7) under same temperature. Hydrolysis rate constants of profenofos in pH 4, pH 7, and pH 9 buffer solutions at 25 and 40。C were 0.0022, 0.0047, 0.0860 and 0.0035, 0.0086, 0.1245, respectively. Hydrolysis rate of profenofos was accelerated by temprerature change under same pH conditions. Hydrolysis rate of profenofos in alkaline solution(pH 9) was 15~40 times faster than in acidic solution(pH 4) and neutral solution(pH 7) under same temperature condition, and half-life of profenofos was very fast within 8 hours. The hydrolysis rate of profenofos was faster than that of phosphamidon. In order to identify hydrolysis products, the extracts of degradation products were analyzed by GC/MS. The mass spectra of hydrolysis products of phosphamidon were at m/z 153 and 149, those of the profenofos were at m/z 208 and 240, respectively. The hydrolysis products of phosphamidon were O, O-dimethyl phosphate(DMP) and N, N-diethylchloroacetamide, and those of profenofos were 4-bromo-2-chlorophenol and O-ethyl-S-propyl phosphate.

  • PDF

Studies on the Zr-Pyrithione Complex (지르코늄-피리치온 착물에 관한 연구)

  • Kwon, Chung-Moo;Rhee, Gye-Ju
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.3
    • /
    • pp.145-152
    • /
    • 1990
  • Zirconium pyrithione complex was prepared by reaction of sodium-pyrithione solution and zirconyl chloride solution. The physico-chemical properties of the complex was examined by means of IR, XRD, DSC and NMR. And the stability of Zr-complex was investigated on the basis of accelerated stability analysis under conditions of temp. elevation, UV radiation and pH dependence. The result indicates that the ratio of the ligand to metal in Zr-pyrithione complex was determined 4:1, and its stability constant was $4.643{\times}10^4$. The rate order of decomposition of the complex was apparent first-order reaction of which rate constant and the decomposition rate was not only accelerated by effect of heat and UV radiation but was catalyzed by specific acid-base catalysis considered the pH dependence for the hydrolysis of the complex and the suspension was most stable over the range pH 4-8 indicating that solvent catalysis is the primary made of reaction in this region.

  • PDF

Adsorption Characteristic of Endo I and Exo II Purified from Cellulase by Trichoderma viride on Celluloses with Different Crystallinity (결정성이 다른 셀룰로오스에 대한 Trichoderma viride속 Cellulase로부터 분리한 Endo I 및 II의 흡착특성)

  • 김동원;홍영관;장영훈;이재국
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.162-167
    • /
    • 1998
  • The adsorption behaviors of two major cellulase components, endo I and exo II, from Trichoderma viride were investigated using $\alpha$-celluloses with different correlation crystallinity index(Cc) as substrates. The adsorption of cellulase enzyme components was significantly affected by the reaction condition and the physicochemical properties of the cellulose. The $\alpha$-cellulose was hydrolyzed in the presence of cellulase for various periods. The correlation crystallinity index of $\alpha$-cellulose increased with increasing the hydrolysis time. The adsorption was apparently found to obey the first-order kinetics, and the adsorption activation energy(Ea) was calculated from the adsorption rate constant(ka). The value of adsorption rate constant for endo I was larger than that of exo II. This means that endo I are adsorbed more rapidly than exo II. With the increase in correlation crystallinity index, the values of the adsorption rate constants for endo I and exo II decreased, respectively. The activation energy for the adsorption of exo II on the cellulose also was larger than that of endo I. Also adsorption activation energy of endo I and exo II increased with an increase in the crystallinity of sample cellulose.

  • PDF

2, 4, 6-Trinitrotoluene(TNT) Treatment by the Alkaline Hydrolysis (가수분해에 의한 2, 4, 6-Trinitrotoluene(TNT) 처리)

  • Kwon, Bumgun;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.69-74
    • /
    • 2012
  • This study investigated the TNT decomposition by the treatment of alkaline hydrolysis. To obtain this objecitive, spectrum shift characteristics, pH effect, kinetics, and product analysis were examined during the alkaline hydrolysis by means of hydroxide ions. At pH = 12, an aqueous solution of TNT was changed into yellow-brown coloring, in which its absorbances were newly increased in a range of wavelength 400-600 nm. From the kinetic data, pseudo-first-order rate constant in a excess of hydroxide ion, in contrast to TNT concentration, was $0.0022min^{-1}$, which means that the reaction rate between TNT and hydroxide ion can be very slow, and that 1,047 min is necessary to achieve a 90% reduction of the initial TNT. In products analyses, nitrite ions and formic acid were mainly produced by the alkaline hydrolysis, nitrate ions and oxalic acid as minor products were generated.