• Title/Summary/Keyword: Hydrolysis mechanism

Search Result 241, Processing Time 0.031 seconds

A Study on the Kinetics and Mechanism of the Hydrolysis of N-Benzylidenebenzenesulfonamide Derivatives (BBSA 유도체의 가수분해메카니즘과 반응속도론적 연구)

  • Suck-Woo Lee;Byung-Man Jang;Gwang Il Lee;Gi Chang Lee
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.919-924
    • /
    • 1992
  • The kinetics of the hydrolysis of N-benzylidenebenzenesulfonamide derivatives have been investigated by ultraviolet spectrophotometry in $H_2O$ at $25^{\circ}C$. A rate equation which can be applied over a wide pH range was obtained. The substituent effect on the hydrolysis of N-benzylidenebenzenesulfonamide derivatives were studied and rate of hydrolysis is known to be accelerated by electron withdrowing group. Final product of the hydrolysis was benzenesulfonamide and benzaldehyde. Base on the rate equation, substituent effect, general base effect and final products, hydrolysis of N-benzylidenebenzenesulfonamide derivatives seemed to be initiated by the hydronium ion at the pH 0.2${\sim}$2.5 and proceeded by the neutral $H_2O$ molecule at pH 3.0${\sim}$8.0 but proceeded by the hydroxide ion at above pH 8.5.

  • PDF

Removal Mechanism of Phosphorus in Wastewater Effluent using Coagulation Process (응집공정을 이용한 하수처리수 중의 인 제거 Mechanism)

  • Han, Seung-Woo;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.774-779
    • /
    • 2010
  • The experimental results for the analysis of aluminum hydrolysis species with PACls (polyaluminum chloride) prepared by different basicity (r value) showed that monomeric Al species were reduced while polymeric Al species were increased with an increase in basicity for PACls. The PACl with 2.2 of r value contained the highest amount of polymeric Al species. According to the experimental results for the phosphorus removal, the alum and PACl (r=0), which consisted of mainly monomeric Al species, were the most effective for phosphorus removal. Therefore, it was concluded that the Al coagulant containing higher amount of monomeric or lower molecular Al species would be more beneficial for phosphorus removal.

A Study on the Hydrolysis and Analysis of o-Chlorobezylidenemalononitrile (o-Chlorobenzylidenemalononitrile의 가수분해 및 분석에 관한 연구)

  • Park, Sung-Woo;Kim, Nam-Yee;Kim, Dong-Hwan;Hong, Sung-Work;Sung, Nack-Do;Kim, Il-Kwang;Oh, In-Kio
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.443-454
    • /
    • 1992
  • The analysis, hydrolysis mechanism, oxidation, reduction, thermal decomposition and metabolism of irritant materials such as chloroacetophenone isomers, bromophenylacetonitrile isomers, o-chlorobenzylidenemalononitrile(CS), and ethylisothiocyanate, etc. are interested in forensic science. We had studied hydrolysis of CS in 10% MeOH-$H_2O$ and 10% dioxane-$H_2O$ at pH 1.0~11.0 and various temperatures. As a result, we identified o-chlorobenzaldehyde and malononitrile that were formed by hydrolysis of CS by using gas chromatography/mass spectrometry, UV/Vis spectrometry, and polarographic method.

  • PDF

Synergistic Effect of Glucoamylase and $\alpha$-Amylase in Enzymatic Hydrolysis of Raw Corn Starch in an Agitated Bead Reaction System (분쇄마찰매체 효소반응계에서 생전분 효소당화를 위한 Glucoamylase와 Alpha-Amylase의 보완작용)

  • 이용현;박동찬
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.352-359
    • /
    • 1990
  • The synergistic effect of glucoamylase and a -amylase on the hydrolysis of raw corn starch in an agitated bead reaction system was studied by investigating the changes of sugar profiles, the granular structure, particle size distribution, and X-ray diffraction pattern of residual raw corn starch. The enzymatic hydrolysis of raw corn starch was greatly enhanced by synergistic effect of glucoamylase and $\alpha$ -amylase. Even though the sugar profiles were mainly determined by the mixing ratio of glucoamylase and $\alpha$-amylase; raw starch was mainly converted to glucose directly without accumulation of any significant amount of oligosaccharides. The cavity formation and fragmentation phenomena of raw corn starch granule subjected to enzyme reaction were analyzed by means of SEM and the particle size distribution. The X-ray diffraction pattern of raw starch was not changed at the initial stage of reaction but slightly changed at the late stage of hydrolysis, which may be caused by the preferential degradation of amorphous region by enzymatic reaction, not by the destruction of microcrystalline structure of raw corn starch.

  • PDF

Kinetics and Mechanism of the Hydrolysis of ${\alpha}$-Cyano-${\beta}$-piperonylacrylic Acid (${\alpha}$-Cyano-${\beta}$-Piperonylacrylic Acid의 가수분해 메카니즘과 그의 반응속도론적 연구)

  • Tae Rin Kim;Kwang Il Lee
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.269-274
    • /
    • 1973
  • The rate constants of the hydrolysis of ${\alpha}$-Cyano-${\beta}$-piperonylacrylic acid were determined by Ultraviolet spectrophotometry at various pH and a rate equation which can be applied over wide pH range was obtained. The reaction mechanism of hydrolysis of ${\alpha}$-Cyano-${\beta}$-piperonylic acid and especially the catalytic contribution of hydroxide ion which not studied carefully before in acidic media, can be fully explained by the rate equation obtained. The rate equation reveals that; below pH 4.0, the reaction is initiated by the addition of water molecule to ${\alpha}$-Cyano-${\beta}$-piperonyl acrylic acid. At pH $5.0{\sim}7.5$, ${\alpha}$-Cyano-${\beta}$-piperonylacrylic acid compete with ${\alpha}$-Cyano-${\beta}$-piperonyl acrylate ion in adding of water. At pH 8.0, water is the only nucleophile for ${\alpha}$-Cyano-${\beta}$-piperonylacrylate ion, however, above pH 12.0, hydroxide ion is an addendum and the accepter is ${\alpha}$-Cyano-${\beta}$-piperonylacrylate ion.

  • PDF

Kinetics of Base Hydrolysis of Some Chromen-2-one Indicator Dyes in Different Solvents at Different Temperatures (여러 온도 및 용매 하에서 수행된 chromen-2-one 지시약 염료들의 염기성 가수분해 반응에 대한 속도론적 연구)

  • Abu-Gharib, Ezz A.;EL-Khatib, Rafat M.;Nassr, Lobna A.E.;Abu-Dief, Ahmed M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.346-353
    • /
    • 2011
  • Base hydrolysis of 7-hydroxy-2H-chromen-2-one (HC) and 7-hydroxy-2H-chromen-2-one-4-acetic acid (HCA) in aqueous-methanol and aqueous-acetone mixtures were studied kinetically at temperature range from 283 to 313 K. The activation parameters of the reactions were evaluated and discussed. Moreover, the change in the activation energy barrier of the investigated compounds from water to water-methanol and water-acetone mixtures was estimated from the kinetic data. It is observed that the change in activation barriers is more or less the same for the hydrolysis of HC and HCA. Base hydrolysis of HC and HCA follows a rate law with $k_{obs}=k_2[OH^-]$. The decrease in the rate constants of HC and HCA as the proportion of methanol or acetone increases is due to the destabilization of $OH^-$ ion. The high negative values of entropy of activation support the proposal mechanism, i.e. the investigated reaction takes place via the formation of an intermediate complex. Moreover, these values refer to the rigidity and stability of the intermediate complex. Thus, the ring opening of the intermediate complex would be the rate controlling step.

Studies on the Stability of Trimebutine maleate in Aqueous Solution (수용액 중 Trimebutine maleate의 안정성)

  • Park, Jong-Hyen;Rhee, Gye-Ju
    • YAKHAK HOEJI
    • /
    • v.34 no.6
    • /
    • pp.415-421
    • /
    • 1990
  • The effects of temperature, pH, light and concentration on the degradation of trimebutine maleate in aqueous solution were investigated on the basis of accelerated stability analysis, and the stabilization of the solution was attempted by addition of several additives. The decomposition of trimebutine maleate in solution followed first-order reaction the was not only accelerated by temperature elevation but also the lower the concentratin the more speeded up the reaction. The decomposition mechanism of trimebtine could be confirmed by hydrolysis of ester bond in the structure. It was assumed trimebutine maleate is so photosensitive that the solution of the drug underwent accelerated decomposition under UV rays. What is more, the degradation of trimebutine solution was supposed to catalyzed by specific acid-base catalysis considered the pH dependence for the hydrolysis of ester, and the solution was most stable over the range of pH 2-2.8 in solution. The additives, citric acid, asparitc acid and glutamic acid, inhibited considerably the decomposition of the drug solution, and these additives might be used as stabilizers in trimebutine maleate solution.

  • PDF