• 제목/요약/키워드: Hydrolysis Process

검색결과 549건 처리시간 0.026초

고구마 전분 대사공학 연구 동향 (Current status on metabolic engineering of starch in sweetpotato)

  • 안영옥;양경실;김선형;곽상수;이행순
    • Journal of Plant Biotechnology
    • /
    • 제36권3호
    • /
    • pp.207-213
    • /
    • 2009
  • Starch serves not only as an energy source for plants, animals, and humans but also as an environmentally friendly alternative for fossil fuels. Progress in understanding of starch biosynthesis, and the isolation of many genes involved in this process have enabled the genetic modification of crops in a rational manner to produce novel starches with improved functionality. Starch is composed of two glucose polymers, amylose and amylopectin. The amylose and amylopectin ratio in starch affects its physical and physicochemical properties. Alteration in starch structure can be achieved by modifying genes encoding the enzymes responsible for starch biosynthesis and starch hydrolysis. Here, we describe recent findings concerning the starch modification in sweetpotato. Sweetpotato [Ipomoea batatas (L.) Lam] ranks seventh in annual production among food crops in the world as an important starch source. To develop transgenic sweetpotato plants with modifying starch composition, we constructed transformation vectors overexpressing granule bound starch synthase I and inhibiting amylopectin synthesis genes such as starch branching enzyme and isoamylase under the control of 35S promoter, respectively. Transformation of sweetpotato (cv. Yulmi) is in progress.

Bioactive Properties of Novel Probiotic Lactococcus lactis Fermented Camel Sausages: Cytotoxicity, Angiotensin Converting Enzyme Inhibition, Antioxidant Capacity, and Antidiabetic Activity

  • Ayyash, Mutamed;Olaimat, Amin;Al-Nabulsi, Anas;Liu, Shao-Quan
    • 한국축산식품학회지
    • /
    • 제40권2호
    • /
    • pp.155-171
    • /
    • 2020
  • Fermented products, including sausages, provide several health benefits, particularly when probiotics are used in the fermentation process. This study aimed to examine the cytotoxicity (against Caco-2 and MCF-7 cell lines), antihypertensive activity via angiotensin-converting enzyme (ACE) inhibition, antioxidant capacity, antidiabetic activity via α-amylase and α-glucosidase inhibition, proteolysis rate, and oxidative degradation of fermented camel and beef sausages in vitro by the novel probiotic Lactococcus lactis KX881782 isolated from camel milk. Moreover, camel and beef sausages fermented with commercial starter culture alone were compared to those fermented with commercial starter culture combined with L. lactis. The degree of hydrolysis, antioxidant capacity, cytotoxicity against Caco-2 and MCF-7, α-amylase, α-glucosidase, and ACE inhibitory activities were higher (p<0.05) in fermented camel sausages than beef sausages. In contrast, the water and lipid peroxidation activity were lower (p<0.05) in camel sausages than beef sausages. L. lactis enhanced the health benefits of the fermented camel sausages. These results suggest that camel sausage fermented with the novel probiotic L. lactis KX881782 could be a promising functional food that relatively provides several health benefits to consumers compared with fermented beef sausage.

EPD 방법을 이용한 알루미나-실리카 복합 코팅막의 제조와 전기절연 특성 (Preparation of Alumina-Silica Composite Coatings by Electrophoretic Deposition and their Electric Insulation Properties)

  • 지혜;김두환;박희정;임형미;이승호;김대성;김영희
    • 한국세라믹학회지
    • /
    • 제51권3호
    • /
    • pp.177-183
    • /
    • 2014
  • Alumina-silica composite coating layers were prepared by electrophoretic deposition (EPD) of plate-shaped alumina particles dispersed in a sol-gel binder, which was prepared by hydrolysis and the condensation reaction of methyltrimethoxysilane in the presence of colloidal silica. The microstructure and the electrical and thermal properties of the coatings were compared according to the EPD process parameter: voltage, time and the content of the plate-shaped alumina particles. The electrical insulation property of the coatings was measured by a voltage test. The coatings were prepared by EPD of the sol-gel binder with 5-30 wt% plate alumina particles on parallel electrodes at a distance of 2 cm for 1-10 min under an applied voltage of 10-30 V. The coatings experienced increased breakdown voltage with increasing thickness. However, the higher the thickness was, the smaller the breakdown voltage strength was. A breakdown voltage as high as 4.6 kV was observed with a $400{\mu}m$ thickness, and a breakdown voltage strength as high as 27 kV/mm was achieved for the sample under a $100{\mu}m$ thickness.

Percolation 공정에서 참나무의 전처리에 과산화수소가 미치는 영향 (Effect of Hydrogen Peroxide on Pretreatment of Oakwood in a Percolation Process)

  • 하석중;김성배;박순철
    • KSBB Journal
    • /
    • 제14권3호
    • /
    • pp.358-364
    • /
    • 1999
  • 참나무의 전처리에 과산화수소가 미치는 영향을 조사하였다. 반응온도는 $170^{\circ}C$이고 전처리에 사용된 반응용액은 암모니아, 황산 그리고 순수 물이었다.10% 암모니아용액을 사용한 경우 산을 사용하는 경우에 비해 리그닌 제거율은 55%로 상당히 높았지만 헤미셀룰로오스 회수율은 26%로 상당히 낮았다. 그래서 헤미셀룰로오스 회수율을 높이기 위해 암모니아 용액에 산화제인 과산화수소를 첨가하여 반응시켰는데 과산화수소 첨가량의 증가에 따라 리그닌 제거율과 헤미셀룰로오스 회수율의 증가는 크지 않았다. 그리고 과산화수소 첨가량의 증가에 따라 액상으로 용해된 당의 분해가 증가하여 전체 헤미셀룰로오스와 셀룰로오스의 물질수지에 문제가 있었다. 반응기에 주입된 과산화수소는 주로 반응기의 전반부에 충진된 기질과 반응하는 것으로 나타났다. 헤미셀룰로오스 회수율을 높이기 위해서는 알카리용액보다 산성용액에서 기질을 전처리하는 것이 필요하였고 산보다는 물을 사용하였을 때 과산화수소의 효과가 더 컸다.

  • PDF

The Investigation on Thermal Aging Characteristics of Oil-Paper Insulation in Bushing

  • Liao, Rui-jin;Hu, En-de;Yang, Li-jun;Xu, Zuo-ming
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1114-1123
    • /
    • 2015
  • Bushing is the key link to connect outer and inner insulating systems and also the essential electric accessory in electric power system, especially in the high voltage engineering (AC 1000kV, DC 800kV). This paper presented the experimental research of thermal aging characteristic of oil-paper insulation used in bushing. A thermally accelerated aging experiment at 90℃ was performed. The bushing models containing five layers of paper were sealed into the aging vessels and further aged for 250 days. Then several important parameters associated with the aging were observed and evaluated. The results showed that the degree of polymerization (DP) of papers gradually decreased. The DP values of outermost layer and middle layer fit well into the second-order kinematic model and first-order kinematic model, respectively. Less deterioration speed of the inter-layer paper than outer layer was confirmed by the variation of DP. Hydrolysis was considered as the main cause to this phenomenon. In addition, the logarithm of the furfural concentrations in insulation oil was found to have good linear relationship with DP of papers. Interestingly, when the aging time is about 250 days and DP is 419, the aging process reaches an inflection point at which the DP approaches the leveling off degree of polymerization (LODP) value. Both tanδ and acid number of oils increased, while surface and volume resistivity of papers decreased. The obtained results demonstrated that thermal aging and moisture absorbed in papers brought great influence to the degradation of insulating paper, leading to rapid decrease of DP and increase of the tanδ. Thus, the bushing should be avoided from damp and real-time monitoring to the variation of tanδ and DP values of paper is an effective way to evaluate the insulation status of bushing.

cAMP antagonizes ERK-dependent antiapoptotic action of insulin

  • Cui, Zhi Gang;Hong, Na-Young;Guan, Jian;Kang, Hee-Kyoung;Lee, Dae-Ho;Lee, Young-Ki;Park, Deok-Bae
    • BMB Reports
    • /
    • 제44권3호
    • /
    • pp.205-210
    • /
    • 2011
  • Insulin has antiapoptotic activity in various cell types. However, the signaling pathways underlying the antiapoptotic activity of insulin is not yet known. This study was conducted to determine if cAMP affects the antiapoptotic activity of insulin and the activity of PI3K and ERK in CHO cells expressing human insulin receptors (CHO-IR). Insulin-stimulated ERK activity was completely suppressed by cAMP-elevating agents like as pertussis toxin (Ptx) and cholera toxin (Ctx) after 4 h treatment. Insulin-stimulated PKB/Akt activity was not affected at all. Ptx treatment together with insulin increased the number of apoptotic cells and the degree of DNA fragmentation. Ctx or 8-br-cAMP treatment also increased the number of apoptotic cells and stimulated the cleavage of caspase-3 and the hydrolysis of PARP. Taken together, cAMP antagonizes the antiapoptotic activity of insulin and the main target molecule of cAMP in this process is likely ERK, not PI3K-dependent PKB/Akt.

슬러지 저감시 효소 전처리의 효율 향상 및 최적화 연구 (Optimal Conditions for Improving Enzyme Preteatment Efficiency in Sludge Reduction Process.)

  • 김정래;심상준
    • 한국미생물·생명공학회지
    • /
    • 제32권2호
    • /
    • pp.166-171
    • /
    • 2004
  • 본 연구는 요즘 하수처리공정의 결과로 발생되는 슬러지에 의한 환경오염 문제를 극복하기 위하여 슬러지 처리 방안으로서 중요시되고 있는 슬러지 전처리 공정 중에서 오존과 효소에 의한 전처리 공정을 연구하고 최적의 처리효율 향상을 위한 방안으로 슬러지 전처리 효율향상과 최적화를 위한 요건을 연구하였다. 슬러지 전처리 최적화를 위하여 오존과 효소의 양을 조절하였다. 그 결과효소의 양에 따라 슬러지내의 SCOD증가량이 비례하여 증가하였다. 오존 자체적인 슬러지의 SCOD증가량은 오존의 양에 따라 증가하였다. 따라서 0.049g $O_3$/g SS일 때 가장 높게 증가하였다. 각기 다른 오존양을 이용하여 슬러지를 전처리한 후 효소에 의한 슬러지 전처리 효율을 비교하면, 오존처리에서는 가장 많은 양의 오존으로 처리한 0.04g $O_3$/g SS에서 높은 처리효율을 보인 반면, 효소에 의한 SCOD증가는 0.03g $O_3$/g SS에서 가장 좋았다. 종합적인 오존과 효소의 전처리에 의한 SCOD증가는 ().03 g $O_3$/g SS일 때 가장 좋았다.

유채단백질의 Proteolysis에 의한 기능성 변화 (Functionality Changes of Rapeseed Protein upon Proteolysis)

  • 김충희;김효선;이장순
    • 한국식품영양과학회지
    • /
    • 제21권5호
    • /
    • pp.519-524
    • /
    • 1992
  • 탈지유채박(Brassica napus var. Youngsan)으로부터 추출, 정제하여 얻어진 유채단백질을 가수분해하여 가수분해물의 이화학적 및 기능적 특성을 조사하였다. 가수분해물의 UN 및 고유형광 스펙트럼은 각각 274nm, 360nm에서 최대치를 나타내었다. 황색도는 약간 감소한 반면 표면 소수성은 약 4배 감소하였다. SDS-PAGE 분석 결과 상당부분이 1.4~$1.2{\times}10^4$ dalton의 분자량을 가진 band로 나타났으며, pH별 용해도는 산성부근에서 10~15% 정도 증가하였고, 수분 및 유흡수성, 거품 팽창성, 에멀젼 안정성은 증가한 반면 절대 점도, 열 및 칼슘 응고성, 거품 안정성, 에멀젼 활성지수는 감소하였다.

  • PDF

Improvement of ${\beta}-glucosidase$ Activity of Olea europaea Fruit Extracts Processed by Membrane Technology

  • Mazzei, R.;Giomo, L.;Spadafora, A.;Mazzuca, S.;Drioli, E.
    • Korean Membrane Journal
    • /
    • 제8권1호
    • /
    • pp.58-66
    • /
    • 2006
  • The ${\beta}-glucosidase$ from olive fruit is of particular interest compared to the ones from other sources because it has shown to have high specifity to convert the oleuropein into dialdehydes, which have antibacterial activity and are of high interest for their application in the food and pharmaceutical fields. The enzyme is not yet commercially available and advanced clean and safe technologies for its purification able to maintain the functional stability are foreseen. The purification of this protein from fruit extracts has been already tempted by electrophoresis but either enzyme deactivation or high background with unclear profiles occurred. In this work, fruit extracts obtained from the ripening stage that showed the highest enzyme activity have been processed by diafiltration and ultrafiltration. Asymmetric membranes made of polyamide or polysulphone having 50 and 30 kDa molecular weight cut-off, respectively, were tested for the diafiltration process. Ultrafiltration membranes made of polyethersulfone with 4 kDa molecular weight cut-off were used to concentrate the dia-filtered permeate solutions. The efficiency of the separation processes was evaluated byenzyme activity tests using the hydrolysis of p-D-nitrophenyl-${\beta}$-D-glucopyranoside (pNPGlc) as reaction model. Qualitative and quantitative electrophoresis were applied to analyze the composition of protein solution before and after the membrane separation; in addition dot blot and western blot analyses were applied to verify the presence of ${\beta}-glucosidase$ in the processed fractions. The overall results showed that the ${\beta}-glucosidase$ functional stability was preserved during the membrane operations and the removal of 20 kDa proteins allowed to increase the specific activity of the enzyme of about 52% compared to the one present in the initial fruit extract.

Isolation of an Acinetobacter junii SY-01 Strain Producing an Extracellular Lipase Enantioselectively Hydrolyzing Itraconazole Precursor, and Some Properties of the Lipase

  • Yoon, Moon-Young;Shin, Pyong-Kyun;Han, Ye-Sun;Lee, So-Ha;Park, Jung-Keug;Cheong, Chan-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.97-104
    • /
    • 2004
  • Water-sludge bacteria were screened to find a lipase enantioselectively hydrolyzing itraconazole precursor, which is well known as the starting material of antifungal drug agents. A bacterial strain was isolated and identified as Acinetobacter junii SY-01. After the strain was cultivated, the enzyme was purified 39.4-fold using ultrafiltration and gel filtration through a Sephadex G-100 chromatographic column and the activity yield was 34.9%. The molecular weight of the enzyme was about 40 kDa, as measured by SDS-PAGE, and the optimum pH was 7.0- 9.0 and stable at pH 6.0- 9.0. The optimum temperature was 45- $5^{\circ}C$, and 73% of the enzymes activity remained after incubation at 70% for 1 h. Enzyme activity was enhanced by gall powder, sodium deoxycholate, a cationic detergent Tween 80, and a non-ionic detergent Triton X-100, but was markedly inhibited by metal ions such as $Hg^{2+},Cu^{2+},Ni^{2+}/,Ca^{2+}$, and an anionic-surfactant sodium dodecylsulfate. The $K_{m}$ values for (R)- and (S)-enantiomers of the itraconazole precursor were 0.385 and 21.83 mM, respectively, and the $V_{max} values ($\mu$Mㆍmin^{-1}.)$ were 6.73 and 6.49, respectively. The acetyl group among the different acyl moieties of itraconazole precursor showed the highest enantioselectivity for the hydrolysis by the Acinetobacter junii SY-01 lipase, and the lipase from Acinetobacter junii SY-01 displayed better enantioselectivity than that of commercially available lipases and esterases.