• 제목/요약/키워드: Hydrolysis Process

검색결과 549건 처리시간 0.024초

게 껍질로부터 Microcrystalline Chitin 제조와 특성 규명 (Preparation and Characterization of Microcrystalline Chitin from Crab Shell)

  • 김성배
    • KSBB Journal
    • /
    • 제11권4호
    • /
    • pp.481-488
    • /
    • 1996
  • Chitin 유도체의 다양한 응용성에도 불구하고 chi­tin의 강한 내약품성과 적당한 용매부재로 산업적인 용도개발은 매우 부진한 실정 이다. 이와 같은 chitin 의 강한 내약품성을 완화시키는 방법의 하나는 chi­tin을 가수분해하여 MCC를 제조동}는 것이다. 기존의 MCC 제조공정은 주로 강산을 사용하는 공정이어서 사용한 산을 제거하거나 회수하기 위해 많은 후처리가 필요하다. 그래서 이를 대체할 수 있는 공정으로 초음파와 과산화수소를 붉은 엽산과 함께 사용하는 공정을 개발하였다. 이 공정의 주요변수로는 산농도, 팽윤시간 및 온도 그리고 초음파 조사시간 및 주파수이고 이들 변수가 분자량에 미치는 영향을 조사하였다. MCC의 분자량은 chitin 분자량 크기의 약 1/8인 30,000 정도였고, 어떤 일정한 크기에 접 근해 가는 것을 발견하였다. 이와 같은 현상은 cellu lose의 분자배열모델을 도입하여 해석하였다. Chitin 과 MCC 모두 섬유형태로 되어 었으며, MCC의 fi bril 크기는 chitin의 fibril 크기보다 훨씬 작음을 알 수 있었다.

  • PDF

광학 분할에 의한 (S)-(+)-Pranidipine의 제조방법 (Preparation of (S)-(+)-Pranidipine by Optical Resolution)

  • 백두종;윤지혜;김문식
    • 대한화학회지
    • /
    • 제59권6호
    • /
    • pp.488-492
    • /
    • 2015
  • 본 연구에서는 칼슘채널 차단제로서 항고혈압 작용을 가진 (S)-(+)-pranidipine의 광학 분할에 의한 효과적인 제조방법을 제시하였다. (±)-Pranidipine을 가수분해시켜 얻은 monocarboxylic acid 5의 라세미 혼합물에 광학 활성이 있는 quinidine을 첨가하여 염을 형성한 다음 불용성 부분입체이성질체 염을 여과하고 염기와 산으로 처리하여 (R)-(-)-carboxylic acid 7을 분리하였고 이 carboxylic acid를 cinnamyl alcohol과의 에스터화 반응에 의해 (S)-(+)-pranidipine을 합성하였다. 이 화합물의 거울상 초과량(enantiomeric excess, ee)을 카이랄 HPLC로 분석한 결과 100% ee 값이 얻어졌고, 합성 과정에서 강염기 사용과 무수 조건 및 초저온 조건을 배제하였는바 이는 산업상 매우 유용한 개량방법이라 하겠다.

UPLC-Q-TOF-MS/MS Analysis for Steaming Times-dependent Profiling of Steamed Panax quinquefolius and Its Ginsenosides Transformations Induced by Repetitious Steaming

  • Sun, Bai-Shen;Xu, Ming-Yang;Li, Zheng;Wang, Yi-Bo;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • 제36권3호
    • /
    • pp.277-290
    • /
    • 2012
  • The metabolic profiles of Panax quinquefolius and its associated therapeutic values are critically affected by the repetitious steaming times. The times-dependent steaming effect of P. quinquefolius is not well-characterized and there is also no official guideline on its times of steaming. In this paper, a UPLC-Q-TOF-MS/MS method was developed for the qualitative profiling of multi-parametric metabolic changes of raw P. quinquefolius during the repetitious steaming process. Our method was successful in discriminating the differentially multi-steamed herbs. Meantime, the repetitious steaming-inducing chemical transformations in the preparation of black American ginseng (American ginseng that was subjected to 9 cycles of steaming treatment) were evaluated by this UPLC-Q-TOF-MS/MS based chemical profiling method. Under the optimized UPLC-Q-TOF-MS/MS conditions, 29 major ginsenosides were unambiguously identified and/or tentatively assigned in both raw and multi-steamed P. quinquefolius within 19 min, among them 18 ginsenosides were detected to be newly generated during the preparatory process of black American ginseng. The mechanisms involved were further deduced to be hydrolysis, dehydration, decarboxylation and addition reactions of the original ginsenosides in raw P. quinquefolius through analyzing mimic 9 cycles of steaming extracts of 14 pure reference ginsenosides. Our novel steaming times-dependent metabolic profiling approach represents the paradigm shift in the global quality control of multi-steamed P. quinquefolius products.

REACTION OF PAPER PULP AND ALKYL KETENE DIMER BY AGING TREATMENT DURING PAPERMAKIN PROCESS

  • Shin, Young-Doo;Seo, Won-Sung;Cho, Nam-Seok
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2000년도 추계학술발표논문집
    • /
    • pp.83-83
    • /
    • 2000
  • Alkylketene dimer was known as a cellulose reactive or alkaline size because it does not require to fix to the fiber as do the traditional rosin sizes. A proposed sizing mechanism of AKD was the formation of P -ketoester bond between AKD and cellulose which provides the permanent attachment and the orientation of the hydrophobic alkylchains outward. However, some questions about the reaction had arisen and thus, the sizing mechanism of AKD has been a subject of controversy for several decades. The major concern of the controversy is that AKD is really reactive with cellulose or not in the papermaking conditions. In this study, reaction between AKD and pulp fiber was investigated, in order to find out whether AKD forms P-ketoester with pulp fiber during aging under no catalyzed neutral condition with obvious spectroscopic evidence. In addition, effect of aging treatment on the sizing development was studied. It has been disclosed that, in absence of water, AKD reacted with cellulose to form P -ketoester linkage under no catalyzed neutral condition, while, in presence of water, most of AKD was hydrolyzed to a dialkyl ketone or P -ketoacid. In addition, during the aging treatment of AKD-sized paper, its typical IR spectra bands gradually were reduced, completely disappeared after 6hr aging, and formed new absorption bands at 1707cm-' and shoulder peak at 1700cm-' which refer to the typical dialkylketone absorption bands. Therefore, the formation of P -ketoester between AKD and pulp fiber is impossible in the practical papermaking process. It could be suggested that the sizing development of AKD-sized paper is obtained by next two mechanism: 1) formation of a thin-layer of AKD on the fiber surface through melting and spreading of AKD emulsion particles by heat and 2) the hydrolysis of AKD to dialkyl ketone which has higher melting point, during drying and storage of AKD sized papers.

  • PDF

우레아 첨가량 변화에 따라 수열합성법으로 제조 된 3mol%Y2O3-ZrO2 분말의 합성 및 기계적 특성 평가 (Hydrothermal Synthesis and Mechanical Characterization of 3mol%Y2O3-ZrO2 by Urea Contents)

  • 이학주;고명원;김택남
    • 한국재료학회지
    • /
    • 제21권8호
    • /
    • pp.425-431
    • /
    • 2011
  • The industrial manufacturing of YSZ products can be summarized as a three step process: a) hydrolysis of zirconyl chloride and mixing of other solutions, b) precipitation, and c) calcination. The addition of ammonia or OH- is essential in the precipitation process. However, a strong agglomeration was observed in the results of an ammonia or OH- addition. Thus, it is necessary to disperse the powders smoothly in order to improve the mechanical strength of YSZ. In this study, YSZ was synthesized using the urea stabilizer and hydrothermal method. YSZ powders were synthesized using a hydrothermal method with Teflon Vessels at $180^{\circ}C$ for 24 h. The mole ratio of urea to Zr was 0, 0.5, 1, and 2. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens ($33\;mm{\times}8\;mm{\times}1{\pm}0.5\;mm$) for three-point bend tests were used in the mechanical properties evaluation. The crystalline of YSZ powders observed a tetragonal phase in the sample with a ratio of Zr:urea = 1:2 addition and a hydrothermal reaction time of 24 h. The average primary particle size of YSZ was measured to be 9 nm to 11 nm. The agglomerated particle size was measured from 15 nm to 30 nm. The three-point bending strength of the YSZ samples was 142.47 MPa, which is the highest value obtained for the Zr:urea = 1:2 ratio addition YSZ sample.

에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안 (Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant)

  • 송민수;김형호;배효관
    • 한국물환경학회지
    • /
    • 제36권1호
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.

MBR 공정에서 수온에 따른 막오염 및 CEB 세정효율 특성 (Characterization of membrane fouling and CEB (Chemical enhanced backwashing) efficiency with temperature in SMBR Process)

  • 박기태;박정훈;최은혜;김형수;김지훈
    • 상하수도학회지
    • /
    • 제31권5호
    • /
    • pp.389-395
    • /
    • 2017
  • In this paper, we investigate the characteristics of membrane fouling caused by water temperature in the Membrane bioreactor(MBR) process and try to derive the membrane fouling control by chemical enhanced backwashing(CEB). The extracellular polymeric substances(EPS) concentration was analyzed according to the water temperature in the MBR, and the membrane fouling characteristics were investigated according to the conditions, with sludge & without sludge, through a lab-scale reactor. As shown in the existing literature the fouling resistance rate was increased within sludge with the water temperature was lowered. However, in the lab-scale test using the synthetic wastewater, the fouling resistance increased with the water temperature. This is because that the protein of the EPS was more easily adsorbed on the membrane surface due to the increase of entropy due to the structural rearrangement of the protein inside the protein as the water temperature increases. In order to control membrane fouling, we tried to derive the cleaning characteristics of CEB by using sodium hypochlorite(NaOCl). We selected the condition with the chemicals and the retention time, and the higher the water temperature and the chemical concentration are the higher the efficiencies. It is considered that the increasing temperature accelerated the chemical reaction such as protein peptide binding and hydrolysis, so that the attached proteinaceous structure was dissolved and the frequency of the reaction collision with the protein with the chemical agent becomes higher. These results suggest that the MBRs operation focus on the fouling control of cake layer on membrane surface in low temperatures. On the other hand, the higher the water temperature is the more the operation strategies of fouling control by soluble EPS adsorption are needed.

2-이미노-1,3-티아졸린 유도체의 최적화 및 벼 도열병에 대한 방제활성 (I) (Lead optimization of 2-imino-1,3-thiazolines and in vivo antifungal activity against rice blast (I))

  • 한호규;남기달;배수열;박익규
    • 농약과학회지
    • /
    • 제8권3호
    • /
    • pp.168-174
    • /
    • 2004
  • 벼 도열병에 대하여 선택적으로 방제효과가 있는 2-이미노-1,3-티아졸린 유도체 1의 최적화 과정 중의 하나로서, 선도물질의 C-5 위치에 메틸기가 도입된 새로운 화합물 교를 합성하고 생물활성을 시험하였다. $\beta$-케토 에스터 7을 브롬화한 다음 thiourea와 반응시키고 가수분해하여 2-아미노-5-메틸-1,3-티아졸린 카르복실산 3을 얻었다. 이것을 아닐린 유도체와 각각 반응시켜 17종의 상응하는 2-이미노-5-메틸-1,3-티아졸린 카르복스 아닐리드 유도체 2를 합성하였다. 벼 도열병에 대한 화합물 2의 방제효과는 화합물 1보다 미약하였다. 2-이미노-1,3-티아졸린 유도체의 벼 도열병에 대한 방제효과는 C-5 위치의 치환체에 의하여 매우 큰 영향을 받았으며, 이것은 이 계열 화합물의 선도물질 최적화 과정에서 분자설계를 위한 중요한 자료가 된다.

졸-겔 공정으로 합성된 코디어라이트를 이용하여 알루미나의 표면개질 (Surface Modification of Alumina Ceramic with Mg2Al4Si5O18 Glass by a Sol-Gel Process)

  • 최필규;추민철;배동식
    • 한국재료학회지
    • /
    • 제24권1호
    • /
    • pp.48-52
    • /
    • 2014
  • The Mg-enriched magnesium aluminum silicate (MAS) glass is known for its higher mechanical strength and chemical resistance. Among such glasses, cordierite ($Mg_2Al_4Si_5O_{18}$) is well known to have a low thermal expansion and low melting point. Polycrystalline engineering ceramics such as alumina can be strengthened by a surface modification with low thermal expansion materials. The present study involves the synthesis of cordierite by a sol-gel process and investigates the effect of glass penetration on the surface of alumina. The cordierite powders were prepared from $Al(OC_3H_7)_3$, $Mg(OC_2H_5)_2$ and tetraethyl orthosilicate by hydrolysis and condensation reaction. The cordierite powders were characterized by X-ray diffraction (XRD, Rigaku), scanning electron microscope (SEM, JEOL: JSM-5610), energy dispersive spectroscopy (EDS, JEOL: JSM-5610), and universal testing machine (UTM, INSTRON). The X-ray diffraction patterns showed that the synthesized particles were ${\mu}$-cordierite calcined at $1100^{\circ}C$ for 1 h. The shape of synthesized cordierite was changed from ${\mu}$-cordierite to ${\alpha}$-cordierite with increasing calcination temperature. Synthesized cordierite was used for surface modification of alumina. Cordierite powders penetrated deeply into the alumina sample along grain boundaries with increasing temperature. The results of surface modification tests showed that the strength of the prepared alumina sample increased after surface modification. The strength of a surface modified with synthesized cordierite increased the most, to about 134.6MPa.

저이용 홍어 가공 부산물을 이용한 고기능성 물질의 생산기술 개발에 관한 연구(1) - 홍어연골을 이용한 콘드로이틴 황산 소재 개발 (A Study on Development of High Functional Materials Producing Technique using By-products from Skate Processing (1) - Development of Chondroitin Sulfate Materials using Skate Cartilages)

  • 백장미;강건희;김상호;노정숙;정갑섭
    • 한국환경과학회지
    • /
    • 제25권5호
    • /
    • pp.645-654
    • /
    • 2016
  • For the purpose of reuse the wasted by-products from the skate process to the health functional food or medicinal material, chondroitin sulfate was extracted from the skate cartilage with the method of hydrolysis with protease enzyme, and the contents of chondroitin sulfate and hydrolyzed protein were measured qualitatively and quantitatively. The effects of chondroitin sulfate on body weight or liver weight changes, hepatotoxicity elimination and anti-inflammatory actions were measured from in vivo test with feed-treated mice. From the hydrolytic extraction of skate cartilage with the mixture of 1% alcalase and 1% protease for 4 hours, the extraction yield of chondroitin sulfate was about 32.55%. The content and molecular weight of chondroitin sulfate was 26.63% and $2.85{\times}10^5Da$., respectively and the content ratio of chondroitin sulfate to protein was measured to 1 to 2.76 with gel permeation chromatography. For the odor component, trimethylamine decreased about 30% but almost not ammonia from chondroitin sulfate with the treatment of activated carbon. From the feeding chondroitin sulfate to mice, the control effect of body and liver weights decrease was measured, anti-inflammatory action and hepatotoxicity elimination action were also measured. From these results, process operation conditions for manufacturing of chondroitin sulfate were suggested.