• Title/Summary/Keyword: Hydrological irrigation

Search Result 84, Processing Time 0.038 seconds

A Practical Study of Unified Management System for Irrigation and Drainage Facilities (수리시설물 통합관리시스템 실용화 연구)

  • 김선주;박성삼
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.3
    • /
    • pp.42-53
    • /
    • 1998
  • About 50 percent of irrigation and drainage facilities in our country are deteriorated as they were constructed over 40 years ago. Worsening the problems in function might be caused by these facilities' constant exposure to the elements. With these reason, efficient maintenance and management of irrigation and drainage facili- ties are required. A computerized system is tailored on the basis of the each characteristics'data of irrigation and drainage facilities. The unified management system to be introduced in this study is a package program consisting of three subprograms. Facility Management(FM) system, the first component, is a relational database system for image processing and registering the characteristics of irrigation and drainage facilities. The objective of this program is to manage the ledger of each facilities and to scan the characteristics of facilities. Telemeter(TM) system, the second component, monitors and processes the data from the sensors statistically. This system is preprogramed for the complete design of TC/TM system. Hydrological Data Management(HDM) system, the third component, executes the hydrological analysis using meteorological data. The unified management system can provide the latest information, such as image data, lists and items of facilities, and items of reforming and rebuilding etc., of the facilities to the manager. At the same time, this system can manage hydrological and meteorological data in realtime.

  • PDF

Prediction of Daily Streamflow on Agricultural Watersheds (농업유역의 일별 하천유출량 추정)

  • Im, Sang-Jun;Park, Seung-U
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.274-282
    • /
    • 2006
  • The objective of this study was to develop a hydrologic simulation model to predict daily streamflow from a small agricultural watershed considering irrigation return flow. The proposed IREFLOW(Irrigation REturn FLOW) model consists of hillslope runoff model, irrigation scheme drainage model, and irrigation return flow model, and simulates daily streamflow from an irrigated watershed. Two small watersheds were selected for monitoring of hydrological components and evaluating the model application. The relative error (RE) between observed and simulated daily streamflow were 2.9% and 6.4%, respectively, on two small agricultural watersheds (Baran and Gicheon) for the calibration period. The values of RE in daliy streamflow for the validation period were 6.0% for the Baran watershed, and 2.8% for the Gicheon watershed.

  • PDF

Water and mass balance analysis for hydrological model development in paddy fields

  • Tasuku, KATO;Satoko, OMINO;Ryota, TSUCHIYA;Satomi, TABATA
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.238-238
    • /
    • 2015
  • There are demands for water environmental analysis of discharge processes in paddy fields, however, it is not fully understood in nutrients discharge process for watershed modeling. As hydrological processes both surface and ground water and agricultural water managements are so complex in paddy fields, the development of lowland paddy fields watershed model is more difficult than upland watershed model. In this research, the improvement of SWAT (Soil and Water Assessment Tool) model for a paddy watershed was conducted. First, modification of surface inundated process was developed in improved pot hole option. Those modification was evaluated by monitoring data. Second, the monitoring data in river and drainage channel in lowland paddy fields from 2012 to 2014 were analyzed to understand discharge characteristics. As a case study, Imbanuma basin, Japan, was chosen as typical land and water use in Asian countries. In this basin, lowland paddy fields are irrigated from river water using small pumps that were located in distribution within the watershed. Daily hydrological fluctuation was too complex to estimate. Then, to understand surface and ground water discharge characteristics in irrigation (Apr-Aug) and non-irrigation (Sep-Mar) period, the water and material balance analysis was conducted. The analysis was composed two parts, watershed and river channel blocks. As results of model simulation, output was satisfactory in NSE, but uncertainty was large. It would be coming from discharge process in return water. The river water and ground water in paddy fields were exchanged each other in 5.7% and 10.8% to river discharge in irrigation and non-irrigation periods, respectively. Through this exchange, nutrient loads were exchanged between river and paddy fields components. It suggested that discharge from paddy fields was not only responded to rainfall but dynamically related with river water table. In general, hydrological models is assumed that a discharge process is one way from watershed to river. However, in lowland paddy fields, discharge process is dynamically changed. This function of paddy fields showed that flood was mitigated and temporally held as storage in ground water. Then, it showed that water quality was changed in mitigated function in the water exchange process in lowland paddy fields. In future, it was expected that hydrological models for lowland paddy fields would be developed with this mitigation function.

  • PDF

Evaluation of Irrigation Vulnerability Characteristic Curves in Agricultural Reservoir (농업용 저수지 관개 취약성 특성 곡선 산정)

  • Nam, Won-Ho;Kim, Taegon;Choi, Jin-Yong;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.39-44
    • /
    • 2012
  • Water supply capacity and operational capability in agricultural reservoirs are expressed differently in the limited storage due to seasonal and local variation of precipitation. Since agricultural water supply and demand basically assumes the uncertainty of hydrological phenomena, it is necessary to improve probabilistic approach for potential risk assessment of water supply capacity in reservoir for enhanced operational storage management. Here, it was introduced the irrigation vulnerability characteristic curves to represent the water supply capacity corresponding to probability distribution of the water demand from the paddy field and water supply in agricultural reservoir. Irrigation vulnerability probability was formulated using reliability analysis method based on water supply and demand probability distribution. The lower duration of irrigation vulnerability probability defined as the time period requiring intensive water management, and it will be considered to assessment tools as a risk mitigated water supply planning in decision making with a limited reservoir storage.

Development and validation of BROOK90-K for estimating irrigation return flows (관개 회귀수 추정을 위한 BROOK90-K의 개발과 검증)

  • Park, Jongchul;Kim, Man-Kyu
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.87-101
    • /
    • 2016
  • This study was conducted to develop a hydrological model of catchment water balance which is able to estimate irrigation return flows, so BROOK90-K (Kongju National University) was developed as a result of the study. BROOK90-K consists of three main modules. The first module was designed to simulate water balance for reservoir and its catchment. The second and third module was designed to simulate hydrological processes in rice paddy fields located on lower watershed and lower watershed excluding rice paddy fields. The models consider behavior of floodgate manager for estimating the storage of reservoir, and modules for water balance in lower watershed reflects agricultural factors, such as irrigation period and, complex sources of water supply, as well as irrigation methods. In this study, the models were applied on Guryangcheon stream watershed. R2, Nash-Sutcliffe efficiency (NS), NS-log1p, and root mean square error between simulated and observed discharge were 0.79, 0.79, 0.69, and 4.27 mm/d respectively in the model calibration period (2001~2003). Furthermore, the model efficiencies were 0.91, 0.91, 0.73, and 2.38 mm/d respectively over the model validation period (2004~2006). In the future, the developed BROOK90-K is expected to be utilized for various modeling studies, such as the prediction of water demand, water quality environment analysis, and the development of algorithms for effective management of reservoir.

Estimating Vulnerable Duration for Irrigation with Agricultural Water Supply and Demand during Residual Periods (농업용수의 잔여 공급계획량 및 수요예측량에 의한 관개 취약시기 산정)

  • Nam, Won-Ho;Kim, Tae-Gon;Choi, Jin-Yong;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.123-128
    • /
    • 2012
  • For optimal reservoir operation and management, there are essential elements including water supply in agricultural reservoir and demand in irrigation district. To estimate agricultural water demand and supply, many factors such as weather, crops, soil, growing conditions cultivation method and the watershed/irrigation area should be considered, however, there are occurred water supply impossible duration under the influence of the variability and uncertainty of meteorological and hydrological phenomenon. Focusing on agricultural reservoir, amount and tendency of agricultural water supply and demand shows seasonally/regionally different patterns. Through the analysis of deviation and changes in the timing of the two elements, duration in excess of water supply can be identified quantitatively. Here, we introduce an approach to assessment of irrigation vulnerable duration for effective management of agricultural reservoir using time dependent change analysis of residual water supply and irrigation water requirements. Irrigation vulnerable duration has been determined through the comparison of water supply in agricultural reservoir and demand in irrigation district based on the water budget analysis, therefore can be used as an improved and basis data for the effective and intensive water management.