• Title/Summary/Keyword: Hydrological impact analysis

Search Result 110, Processing Time 0.03 seconds

Evaluation of Hydrological Impacts Caused by Land Use Change (토지이용변화에 따른 수문영향분석)

  • Park, Jin-Yong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.54-66
    • /
    • 2002
  • A grid-based hydrological model, CELTHYM, capable of estimating base flow and surface runoff using only readily available data, was used to assess hydrologic impacts caused by land use change on Little Eagle Creek (LEC) in Central Indiana. Using time periods when land use data are available, the model was calibrated with two years of observed stream flow data, 1983-1984, and verified by comparison of model predictions with observed stream flow data for 1972-1974 and 1990-1992. Stream flow data were separated into direct runoff and base flow using HYSEP (USGS) to estimate the impacts of urbanization on each hydrologic component. Analysis of the ratio between direct runoff and total runoff from simulation results, and the change in these ratios with land use change, shows that the ratio of direct runoff increases proportionally with increasing urban area. The ratio of direct runoff also varies with annual rainfall, with dry year ratios larger than those for wet years shows that urbanization might be more harmful during dry years than abundant rainfall years in terms of water yield and water quality management.

Future Projection and Uncertainty Analysis of Low Flow on Climate Change in Dam Basins (기후변화에 따른 저유량 전망 및 불확실성 분석)

  • Lee, Moon Hwan;Bae, Deg Hyo
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.407-419
    • /
    • 2016
  • The low flow is the necessary and important index to establish national water planning, however there are lots of uncertainty in the low flow estimation. Therefore, the objectives of this study are to assess the climate change uncertainty and the effects of hydrological models on low flow estimation. The 5 RCMs (HadGEM3-RA, RegCM4, MM5, WRF, and RSM), 5 statistical post-processing methods and 2 hydrological models were applied for evaluation. The study area were selected as Chungju dam and Soyang river dam basin, and the 30 days minimum flow is used for the low flow evaluation. The results of the uncertainty analysis showed that the hydrological model was the largest source of uncertainty about 41.5% in the low flow projection. The uncertainty of hydrological model is higher than the other steps (RCM, statistical post-processing). Also, VIC model is more sensitive for climate change compared to SWAT model. Therefore, the hydrological model should be thoroughly reviewed for the climate change impact assessment on low flow.

Uncertainty Analysis in Hydrologic and Climate Change Impact Assessment in Streamflow of Upper Awash River Basin

  • Birhanu, Dereje;Kim, Hyeonjun;Jang, Cheolhee;Park, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.327-327
    • /
    • 2019
  • The study will quantify the total uncertainties in streamflow and precipitation projections for Upper Awash River Basin located in central Ethiopia. Three hydrological models (GR4J, CAT, and HBV) will be used to simulate the streamflow considering two emission scenarios, six high-resolution GCMs, and two downscaling methods. The readily available hydrometeorological data will be applied as an input to the three hydrological models and the potential evapotranspiration will be estimated using the Penman-Monteith Method. The SCE-UA algorithm implemented in PEST will be used to calibrate the three hydrological models. The total uncertainty including the incremental uncertainty at each stage (emission scenarios and model) will be presented after assessing a total of 24 (=$2{\times}6{\times}2$) high-resolution precipitation projections and 72 (=$2{\times}6{\times}2{\times}3$) streamflow projections for the study basin. Finally, the primary causes that generate uncertainties in future climate change impact assessments will be identified and a conclusion will be made based on the finding of the study.

  • PDF

Transfer Functional Modeling Using Soil Moisture Measurements at a Steep Forest Hillslope (산지사면의 실측토양수분을 이용한 전이함수 모형의 적용)

  • Kim, Sang-Hyun
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.415-424
    • /
    • 2013
  • In this paper, time series of soil moisture were measured for a steep forest hillslope to model and understand distinct hydrological behaviours along two different transects. The transfer function analysis was presented to characterize temporal response patterns of soil moisture for rainfall events. The rainfall is a main driver of soil moisture variation, and its stochastic characteristic was properly treated prior to the transfer function delineation between rainfall and soil moisture measurements. Using field measurements for two transects during the rainy season in 2007 obtained from the Bumrunsa hillslope located in the Sulmachun watershed, a systematic transfer functional modeling was performed to configure the relationships between rainfall and soil moisture responses. The analysis indicated the spatial variation pattern of hillslope hydrological processes, which can be explained by the relative contribution of vertical, lateral and return flows and the impact of transect topography.

Accuracy analysis of flood forecasting of a coupled hydrological and NWP (Numerical Weather Prediction) model

  • Nguyen, Hoang Minh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.194-194
    • /
    • 2017
  • Flooding is one of the most serious and frequently occurred natural disaster at many regions around the world. Especially, under the climate change impact, it is more and more increasingly trend. To reduce the flood damage, flood forecast and its accuracy analysis are required. This study is conducted to analyze the accuracy of the real-time flood forecasting of a coupled meteo-hydrological model for the Han River basin, South Korea. The LDAPS (Local Data Assimilation and Prediction System) products with the spatial resolution of 1.5km and lead time of 36 hours are extracted and used as inputs for the SURR (Sejong University Rainfall-Runoff) model. Three statistical criteria consisting of CC (Corelation Coefficient), RMSE (Root Mean Square Error) and ME (Model Efficiency) are used to evaluate the performance of this couple. The results are expected that the accuracy of the flood forecasting reduces following the increase of lead time corresponding to the accuracy reduction of LDAPS rainfall. Further study is planed to improve the accuracy of the real-time flood forecasting.

  • PDF

The Analysis of Hydrological Property with Curved-channel Type (하도만곡형상에 따른 수리특성분석)

  • Ahn, Seung-Seop;Lee, Sang-Il;Park, Dong-Il;Kim, Wi-Seok
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1309-1317
    • /
    • 2011
  • This study selected 6 river reach, which have various curved-channel, included in an object of study as making the Nakdong River, which is a real nature river, as a point of an object of study by using SMS RMA-2 model, a 2D numerical analysis model, and applied project flood and analyzed and examined characteristic of hydrological property and super-elevation, which includes characteristic of the velocity of a moving fluid. As a result, in a river reach, whose width is wide, angle of curved-channel has impact on the velocity of a moving fluid of inside of curved-channel and in a river reach, whose width is narrow, the radius of curvature and width of the river have impact on the velocity of a moving fluid of inside of curved-channel. Also it found out that the ratio of reduction in water-level of inside of curved-channel is more bigger than ratio of increasing in water-level of outside of curved-channel when project flood is increasing and angle of curve is increasing. Based on this, this study would be used as a expectation of danger and preliminary data in planning real river or a business, that creates an environment.

Analysis of Hydrological Impact for Long-term Land Cover Change using WMS HEC-l Model in Anseong-Cheon Watershed (WMS HEC-1을 이용한 안성천 유역의 경년 수문 변화 분석)

  • Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.293-296
    • /
    • 2002
  • The purpose of this study is to evaluate the hydrological impact due to temporal land cover change urbanization of Anseong-cheon watershed $(585.09km^2)$. WMS (Watershed Modeling System) HEC-1 was adopted, and burned DEM with $200{\times}200m$ resolution and soil map reclassified by hydrologic soil groups were prepared. Land cover for 1985, 1990, 1995 and 2000 were classified by maximum likelihood method, using Landsat MSS and TM imageries. Calibration and verification of HEC-1 were conducted using 4 storm events. Peak flow at Pyeong taek station increased $25.9m^3/sec$ during the past 15 years due to paddy and forest decrease. Streamflow impact by just paddy area decrease and forest area decrease were also analysed keeping watershed CN values unchanged of the given year, respectively.

  • PDF

Decision Support System for Determination of Types and Locations of Low Impact Development Practices

  • Abdulai, Patricia Jitta;Song, Jae Yeol;Chung, Eun-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.181-181
    • /
    • 2017
  • Low impact development (LID) practices has become important to mitigate the damage from natural disasters in urban areas. Thereby many hydrological simulation models can simulate the hydrological impact of LID practices. However, commonly used models are not able to provide specific information to most users such as where LIDs should be placed and what kind of LID should be designed. In this study, a decision support system which can be used with the EPA's SWMM was developed for the determination of LID types and locations of LID practices, named Water Management Prioritization Module (WMPM), was applied to a urbanized university campus. Eight sub-catchments were selected as feasible candidate areas for the planning of LID practices. Pre-designated infiltration trenches and permeable pavements were applied to each selected sub-catchments, followed by peak and total runoffs comparison between before/after planning of LIDs. Moreover, TOPSIS, one of a multi-criteria decision analysis method was used in the procedure of selecting target sub-catchment areas and final prioritization of LID types and locations. As a result, sub-catchments S4 with permeable pavements and S16 with infiltration trenches has shown the most decrease in total and peak runoffs, respectively. Therefore, WMPM was found to be effective in determining the best alternative among various scenarios generated and simulated.

  • PDF

Hydrological impact of Atmospheric River landfall on the Korean Peninsula (Atmospheric River의 한반도 수문학적 영향에 대한 연구)

  • Han, Heechan;Choi, Changhyun;Moon, Heyjin;Jung, Jaewon;Lee, Choongke;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.1039-1047
    • /
    • 2020
  • Atmospheric rivers, which transport large amount of water vapor from mid-latitude to the inland, are an important driving force of water cycle and extreme hydrologic phenomenas. The main objective of this study is to analyze the hydrological impact of the AR landfalls on the Korean Peninsula in 2000 - 2015. The result showed that the AR is closely related to the characteristics of precipitation, water level and runoff in the Korean Peninsula. The landfalls of the AR affected about 57% of annual precipitation on the Korean Peninsula, and had a greatest impact on the summer rainfall. It also affected the water level and runoff at the five major rivers of Korea, and water levels exceeding the thresholds of flood warning were observed when the AR landed. Moreover, it was found that the runoff above the third quartile with AR landfalls. These results suggest that the AR not only has a significant influence on the hydrological characteristics of the Korean Peninsula, but also have a close relationship with the extreme hydrological events like floods. The results of this study are expected to be used as the reference for the analysis of the impact of the AR on the various fields in the Korean Peninsula.

Derivation of design and planning parameters for permeable pavement using Water Management Analysis Module (Water Management Analysis Module 모형을 이용한 투수성포장시설의 설계 및 계획 매개변수 도출)

  • Song, Jae Yeol;Chung, Eun-Sung;Song, Young Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.491-501
    • /
    • 2018
  • This study presents a systematic framework to derive the best values of design and planning parameters for low impact development (LID) practices. LID was developed to rehabilitate the distorted hydrological cycle due to the rapid urbanization. This study uses Water Management Analysis Module (WMAM) to perform sensitivity analysis and multiple scenario analysis for LID design and planning parameters of Storm Water Management Model (SWMM). This procedure was applied to an urban watershed which have experienced rapid urbanization in recent years. As a result, the design and planning scenario derived by WMAM shows lower total flows and peak flow, and larger infiltration than arbitrary scenarios for LID design and planning parameters. In the future, economic analysis can be added for this application in the field.