DOI QR코드

DOI QR Code

Derivation of design and planning parameters for permeable pavement using Water Management Analysis Module

Water Management Analysis Module 모형을 이용한 투수성포장시설의 설계 및 계획 매개변수 도출

  • Song, Jae Yeol (Department of Civil Engineering, University of Alabama) ;
  • Chung, Eun-Sung (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Song, Young Hoon (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 송재열 (알라바라 대학교 토목공학과) ;
  • 정은성 (서울과학기술대학교 건설시스템공학과) ;
  • 송영훈 (서울과학기술대학교 건설시스템공학과)
  • Received : 2018.02.06
  • Accepted : 2018.03.06
  • Published : 2018.06.30

Abstract

This study presents a systematic framework to derive the best values of design and planning parameters for low impact development (LID) practices. LID was developed to rehabilitate the distorted hydrological cycle due to the rapid urbanization. This study uses Water Management Analysis Module (WMAM) to perform sensitivity analysis and multiple scenario analysis for LID design and planning parameters of Storm Water Management Model (SWMM). This procedure was applied to an urban watershed which have experienced rapid urbanization in recent years. As a result, the design and planning scenario derived by WMAM shows lower total flows and peak flow, and larger infiltration than arbitrary scenarios for LID design and planning parameters. In the future, economic analysis can be added for this application in the field.

본 연구는 도시 유역의 물 순환을 개선시키기 위해 최근 활발하게 적용되고 있는 저영향개발(low impact development, LID) 시설의 설계 및 계획 매개변수를 선정하기 위한 방법을 제시하였다. 이때 Storm Water Management Model (SWMM) 모형의 LID 시설 모의 기능을 활용하여 다양한 매개변수에 대해 민감도 분석 및 다양한 시나리오를 자동으로 수행하여 비교할 수 있도록 개발된 Water Management Analysis Module (WMAM)을 이용하였다. 본 연구는 최근 도시화가 진행되고 있는 서울의 한 유역에 적용하였다. 적용 결과 LID 중 하나인 투수성포장 시설이 없는 경우와 임의로 결정된 설계 및 계획 시나리오 보다 본 방법을 통해 도출된 시나리오가 총유출량 및 첨두유량 감소와 침투량 증가에 더 좋은 효과를 보였다. 향후 경제성을 고려한 방법을 개발한다면 실무에서도 활용될 수 있을 것으로 예상된다.

Keywords

References

  1. Ahiablame, L., and Shakya, R. (2016). "Modeling flood reduction effects of low impact development at a watershed scale." Journal of Environmental Management, Vol. 171, No. 15, pp. 81-91.
  2. Ahiablame, L., Engel, B., and Chaubey, I. (2012). "Effectiveness of low impact development practices: literature review and suggestions for future research." Water, Air, and Soil Pollution, Vol. 223, No. 7, pp. 4253-4273. https://doi.org/10.1007/s11270-012-1189-2
  3. Baek, S.-S., Choi, D.-H., Jung, J.-W., Lee, H.-J., Lee, H., Yoon, K.-S., and Cho, K.H. (2015). "Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: experimental and modeling approach." Water Research, Vol. 86, pp. 122-131. https://doi.org/10.1016/j.watres.2015.08.038
  4. Bloorchian, A. A., Ahiablame, L., Osouli, A., and Zhou, J. (2016). "Modeling BMP and vegetative cover performance for highway stormwater runoff reduction." Procedia Engineering, Vol. 145, pp. 274-280. https://doi.org/10.1016/j.proeng.2016.04.074
  5. Chung, E.-S., and Kim, Y. (2014). "Development of fuzzy multi-criteria approach to prioritize locations of treated wastewater use considering climate change scenarios." Journal of Environmental Management, Vol. 146, pp. 505-516. https://doi.org/10.1016/j.jenvman.2014.08.013
  6. Collins, K. A., Hunt, W. F., and Hathaway, J. M. (2008). "Hydrologic comparison of four types of permeable pavement and Standard Asphalt in Eastern North Carolina." Journal of Hydrologic Engineering, Vol. 13, pp. 1146-1157. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:12(1146)
  7. Damodaram, C., Giacomoni, M. H., Prakash Khedun, C., Holmes, H., Ryan, A., Saour, W., and Zechman, E.M. (2010). "Simulation of combined best management practices and low impact development for sustainable stormwater management." Journal of the American Water Resources Association, Vol. 46, No. 5, pp. 907-918. https://doi.org/10.1111/j.1752-1688.2010.00462.x
  8. Fassman, E. A., and Blackbourn, S. (2010). "Urban runoff mitigation by a permeable pavement system over impermeable soils." Journal of Hydrologic Engineering, Vol. 15, pp. 475-485. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000238
  9. Finney, K., and Gharabaghi, B. (2011). "Using the PCSWMM 2010 SRTC tool to design a compost biofilter for highway stormwater runoff treatment." Journal of Water Management Modeling, R241-R209.
  10. Gao, J., Wang, R., Huang, J., and Liu, M. (2015). "Application of BMP to urban runoff control using SUSTAIN model: Case study in an industrial area." Ecological Modelling, Vol. 318, pp. 177-183. https://doi.org/10.1016/j.ecolmodel.2015.06.018
  11. Gardner, R. H., Huff, D. D., O'Neill, R. V., Mankin, J. B., Carney, J., and Jones, J. (1980) "Application of error analysis to marsh hydrology model." Water Resources Research, Vol. 16, pp. 659-664. https://doi.org/10.1029/WR016i004p00659
  12. Irvine, K., Sovann, C., Suthipong, S., Kok, S., and Chea, E. (2015). "Application of PCSWMM to assess wastewater treatment and urban flooding scenarios in Phnom Penh, Cambodia: A tool to support eco-city planning." Journal of Water Management Modeling, C389.
  13. Kaini, P., Artita, K., and Nicklow, J. W. (2012). "Optimizing structural best management practices using SWAT and genetic algorithm to improve water quality goals." Water Resources Research, Vol. 26, pp. 1827-1845.
  14. Kang, T., Koo, Y., and Lee, S. (2015). "Design of stormwater pipe considering vegetative swale with water conveyance." Journal of Korean Society of Hazard Mitigation Vol. 15, pp. 335-343. https://doi.org/10.9798/KOSHAM.2015.15.1.335
  15. Ki, S.J., and Ray, C. (2014). "Using fuzzy logic analysis for siting decisions of infiltration trenches for highway runoff control." Science of the Total Environment, Vol. 493, pp. 44-53. https://doi.org/10.1016/j.scitotenv.2014.05.121
  16. Kim, Y., Chung, E., Jun, S., and Kim, S. U. (2013). "Prioritizing the best sites for treated wastewater instream use in an urban watershed using fuzzy TOPSIS." Resources, Conservation and Recycling, Vol. 73, pp. 23-32. https://doi.org/10.1016/j.resconrec.2012.12.009
  17. Lee, J. G., Selvakumar, A., Alvi, K., Riverson, J., Zhen, J. X., Shoemaker, L., and Lai, F.-H. (2012). "A watershed-scale design optimization model for stormwater best management practices." Environmental Modelling and Software, Vol. 37, pp. 6-18. https://doi.org/10.1016/j.envsoft.2012.04.011
  18. Martinez-Martinez, E., Nejadhashemi, A. P., Woznicki, S. A., Adhikari, U., and Giri, S., (2015). "Assessing the significance of wetland restoration scenarios on sediment mitigation plan." Ecological Engineering, Vol. 77, pp. 103-113. https://doi.org/10.1016/j.ecoleng.2014.11.031
  19. Mouritz, M., (1992). Sustainable urban water systems; policy & pofessional praxis. Perth, Australia: Murdoch University.
  20. Noh, S., Chung, E., and Seo, Y. (2015). "Performance of a rain barrel sharing network under climate change." Water, Vol. 7, pp. 3466-3485. https://doi.org/10.3390/w7073466
  21. Park, I., Kim, H., Chae, S.-K., and Ha, S. (2010). "Probability mass first flush evaluation for combined sewer discharges." Journal of Environmental Sciences, Vol. 22. No. 6, pp. 915-922. https://doi.org/10.1016/S1001-0742(09)60198-4
  22. Prince George's County Department of Environmental Resources (1993). Design manual for use of bioretention in stormwater management, Prince George's County, Maryland. Maryland, USA: Division of Environmental Management, Watershed Protection Branch.
  23. Robinson, B. (2015). "Modeling sanitary sewer groundwater inflow rehabilitation effectiveness in SWMM5 using a two aquifer approach." Journal of Water Management Modeling, C385.
  24. Rossman, L.A. (2015). Storm water management model user's Manual Version 5.1. United States Environmental Protection Agency, Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cincinnati, Ohio.
  25. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S. (2008) Global Sensitivity Analysis: The Primer. John Wiley & Sons: West Sussex, UK.
  26. Song, J. Y., and Chung, E. S. (2017). "A multi-criteria decision analysis framework for prioritizing sites and types of low impact development practices." Water, Vol. 9, No. 4, doi: 10.3390/w9040291.
  27. Song, J., Chung, E. S., and Kim, S. H. (2018). "Decision support systems based on SWMM5.1 for urban water planning and management." Water, Vol. 10, 146; doi:10.3390/w10020146.
  28. Walmsley, A. (1995). "Greenways and the making of urban form." Landscape and Urban Planning, Vol. 33, No. 1, pp. 81-127. https://doi.org/10.1016/0169-2046(95)02015-L
  29. Wu, J., Yu, S. L., and Zou, R. (2006). "A water quality-based approach for watershed wide BMP strategies." Journal of the American Water Resources Association, Vol. 42, pp. 1193-1204. https://doi.org/10.1111/j.1752-1688.2006.tb05606.x
  30. Yang, J., Son, M., Chung, E., and Kim, I. (2015). "Prioritizing feasible locations for permeable pavement using MODFLOW and multi-criteria decision making methods." Water Resources Management, Vol. 29, pp. 4539-4555. https://doi.org/10.1007/s11269-015-1074-z
  31. Youn, S., Chung, E., Kang, W. G., and Sung, J. H. (2012). "Probabilistic estimation of the storage capacity of a rainwater harvesting system considering climate change." Resources, Conservation and Recycling, Vol. 65, pp. 136-144. https://doi.org/10.1016/j.resconrec.2012.05.005
  32. Zhang, S., and Guo, Y. (2014). "SWMM simulation of the storm water volume control performance of permeable pavement systems." Journal of Hydrologic Engineering. DOI: 10.1061/ (ASCE)HE.1943-5584.0001092.