• Title/Summary/Keyword: Hydrological factor

Search Result 132, Processing Time 0.029 seconds

Calculation of Soil Moisture and Evaporation on the Korean Peninsula using NASA LIS(Land Information System) (NASA LIS(Land Information System)을 이용한 한반도의 토양수분·증발산량 산출)

  • PARK, Gwang-Ha;YU, Wan-Sik;HWANG, Eui-Ho;JUNG, Kwan-Sue
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.83-100
    • /
    • 2020
  • This study evaluated the accuracy of soil moisture and evapotranspiration by calculating the hydrological parameters in Korean peninsula using Land Information System(LIS) developed by US NASA. We used Noah-MP surface model to calculate hydrological parameters, and used MERRA2(Modern-Era Retrospective analysis for Research and Applications, Version 2) for hydrological forcing data. And, International Geosphere-Biosphere Program(IGBP) and University of Maryland(UMD) land cover maps were applied to compare the output accuracy, and Automated Synoptic Observing System(ASOS) of KMA was used as ground observation data. In order to evaluate the accuracy of the output data, the correlation coefficient(CC), BIAS, and efficiency factor (NSE, Nash-Sutcliffe Efficiency) were analyzed with soil moisture and evapotranspiration by ASOS ground observation data. As a result, the correlation coefficient of soil moisture using IGBP was 0.56 on average, and evapotranspiration was about 0.71. On the other hand, soil moisture using UMD was 0.68 on average and evapotranspiration was about 0.72, and the correlation coefficient by UMD was evaluated as high accuracy compared to the results by using IGBP. The correlation coefficient of soil moisture was an average of 0.68 and evapotranspiration was an average of 0.72 when MERRA2 was used as hydrological forcing data. On the other hand, the soil moisture applied with ASOS was an average of 0.66, and evapotranspiration was an average of 0.72. It is judged that the ASOS point data was reanalyzed as 0.65°× 0.5°grids, which is the same spatial resolution with MERRA2, resulting in differences in accuracy depending on the region.

Assessment of future hydrological behavior of Soyanggang Dam watershed using SWAT (SWAT 모형을 이용한 소양강댐 유역의 미래 수자원 영향 평가)

  • Park, Min Ji;Shin, Hyung Jin;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.337-346
    • /
    • 2010
  • Climate change has a huge impact on various parts of the world. This study quantified and analyzed the effects on hydrological behavior caused by climate, vegetation canopy and land use change of Soyanggang dam watershed (2,694.4 $km^2$) using the semi-distributed model SWAT (Soil Water Assessment Tool). For the 1997-2006 daily dam inflow data, the model was calibrated with the Nash-Sutcliffe model efficiencies between the range of 0.45 and 0.91. For the future climate change projection, three GCMs of MIROC3.2hires, ECHAM5-OM, and HadCM3 were used. The A2, A1B and B1 emission scenarios of IPCC (Intergovernmental Panel on Climate Change) were adopted. The data was corrected for each bias and downscaled by Change Factor (CF) method using 30 years (1977-2006, baseline period) weather data and 20C3M (20th Century Climate Coupled Model). Three periods of data; 2010-2039 (2020s), 2040-2069 (2050s), 2070-2099 (2080s) were prepared for future evaluation. The future annual temperature and precipitation were predicted to change from +2.0 to $+6.3^{\circ}C$ and from -20.4 to 32.3% respectively. Seasonal temperature change increased in all scenarios except for winter period of HadCM3. The precipitation of winter and spring increased while it decreased for summer and fall for all GCMs. Future land use and vegetation canopy condition were predicted by CA-Markov technique and MODIS LAI versus temperature regression respectively. The future hydrological evaluation showed that the annual evapotranspiration increases up to 30.1%, and the groundwater recharge and soil moisture decreases up to 55.4% and 32.4% respectively compared to 2000 condition. Dam inflow was predicted to change from -38.6 to 29.5%. For all scenarios, the fall dam inflow, soil moisture and groundwater recharge were predicted to decrease. The seasonal vapotranspiration was predicted to increase up to 64.2% for all seasons except for HadCM3 winter.

Study of Correlation Between Flash Flood and GcIUH Parameters using GIS (GIS를 이용한 한계유량과 GcIUH 매개변수간의 상관성분석에 관한 연구)

  • Yang, In Tae;Park, Kheun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.37-44
    • /
    • 2013
  • Concentrated localized torrential rains due to global warming and climate change have resulted in much water damage each year. GIS is used as a tool for predicting the peak-outflows caused by these regional torrential rains in mountainous rivers. However, the research of the resolution of the data is limited, and most of approaches are about hydrological geographic. This paper estimates the flood discharge needed for decision of standard rainfall of automatic rainfall warning system by using GIS with GcIUH model, and establishes the criteria of flash flood warning. It also has analyzed the terrain in river basin, extracted the morphological characteristics parameters of water shed such as stream width, channel slope, channel length, shape factor, and GcIUH parameters, and analyzed the relationship between them.

Key Parameters Analysis of Important Radionuclides in Dose Evaluation Model of Decommissioning Site (해체 부지 선량평가모텔의 주요 핵종에 대한 Key parameter 분석)

  • 임용규;김학수;손중권;박경록;강기두;김경덕;정찬우
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.52-57
    • /
    • 2004
  • In order to analyze key parameters of important radionuclides in dose evaluation model of decommissioning site, a sensitivity analysis was performed. This analysis assumed a resident farmer for an exposure scenario and 0.037Bq/g for the concentration of radionuclides. As a result of sensitivity analysis, the key parameters of radionuclides considered were the area of contaminated zone, external gamma shielding factor and indoor time fraction for Cs-137 and Co-60. The key parameters for C-14 were the environmental parameters and hydrological parameters of unsaturated zone. Also, the key parameter for Sr-90 was the density of contaminated zone.

  • PDF

Assessment of Future Climate Change Impacts on Hydrological Behavior and Stream Water Quality using SWAT Model (SWAT 모형을 이용한 미래 기후변화가 충주댐 유역의 수문학적 거동 및 하천수질에 미치는 영향 평가)

  • Park, Jong-Yoon;Park, Min-Ji;Ahn, So-Ra;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.57-61
    • /
    • 2009
  • 본 연구에서는 SWAT(Soil and Water Assessment Tool) 모형을 이용하여 미래 기후변화가 댐 유역의 하천수질에 미치는 영향을 분석하였다. 충주댐 상류유역($6,585.1km^2$)에 대해 민감도 분석을 통해 최적의 유출및 유사관련 매개변수를 선정하였으며, 충주호 유입하천 상류 2개 지점/영월1, 영월2)과 유역 출구점을 대상으로 일별 유출량 및 월별 수질자료를 바탕으로 모형의 보정(1998-2000)및 검증(2001-2003)을 실시하였다. 미래 기후자료는 IPCC(Intergovernmental Panel on Climate Change)에서 제공하는 SRES/Special Report on Emission Scenarios) A2, A1B, B1 기후변화시나리오의 MIROC3.2 hires와 ECHAM5-OM 모델의 결과 값을 이용하였다. 먼저 과거 30년 기후자료(1977-2006, baseline)를 바탕으로 각 모델별 20C3M(20th Century Climate Coupled Model)의 모의 결과 값을 이용하여 강수와 온도를 보정한 뒤 Change Factor(CF) Method로 Downscaling 하였으며, 미래 기후변화 시나리오는 2020s, 2050s, 2080s의 세 기간으로 나누어 각각 분석 하였다. 기후변화 시나리오 적용에 따른 SWAT 모의결과로부터 기후변화가 수문학적 거동 및 하천수질에 미치는 영향을 평가하였다.

  • PDF

A New Method to Retrieve Sensible Heat and Latent Heat Fluxes from the Remote Sensing Data

  • Liou Yuei-An;Chen Yi-Ying;Chien Tzu-Chieh;Chang Tzu-Yin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.415-417
    • /
    • 2005
  • In order to retrieve the latent and sensible heat fluxes, high-resolution airborne imageries with visible, near infrared, and thermal infrared bands and ground-base meteorology measurements are utilized in this paper. The retrieval scheme is based on the balance of surface energy budget and momentum equations. There are three basic surface parameters including surface albedo $(\alpha)$, normalized difference vegetation index (NOVI) and surface kinetic temperature (TO). Lowtran 7 code is used to correct the atmosphere effect. The imageries were taken on 28 April and 5 May 2003. From the scattering plot of data set, we observed the extreme dry and wet pixels to derive the fitting of dry and wet controlled lines, respectively. Then the sensible heat and latent heat fluxes are derived from through a partitioning factor A. The retrieved latent and sensible heat fluxes are compared with in situ measurements, including eddy correlation and porometer measurements. It is shown that the retrieved fluxes from our scheme match with the measurements better than those derived from the S-SEBI model.

  • PDF

The Effect of Seasonal Input on Predicting Groundwater Level Using Artificial Neural Network (인공신경망을 이용한 지하수위 예측과 계절효과 반영을 위한 입력치의 영향)

  • Kim, Incheol;Lee, Junhwan
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.125-133
    • /
    • 2018
  • Artificial neural network (ANN) is a powerful model to predict time series data and have been frequently adopted to predict groundwater level (GWL). Many researchers have also tried to improve the performance of ANN prediction for GWL in many ways. Dummies are usually used in ANN as input to reflect the seasonal effect on predicted results, which is necessary for improving the predicting performance of ANN. In this study, the effect of Dummy on the prediction performance was analyzed qualitatively and quantitatively using several graphical methods, correlation coefficient and performance index. It was observed that results predicted using dummies for ANN model indicated worse performance than those without dummies.

DETECTION OF GROUNDWATER DISCHARGE POINTS IN COASTAL REGIONS AROUND MT. CHOKAISAN, JAPAN BY USING LANDSAT ETM+ DATA

  • Kageyama, Yoichi;Shibata, Chieko;Nishida, Makoto
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.57-60
    • /
    • 2008
  • The flow of freshwater into the sea, termed as submarine groundwater discharge, is a key factor for understanding the hydrological cycle in both the sea and land regions. The numerous positions from which freshwater gushes out or its quantity impedes the understanding of its properties. Therefore, this study detects groundwater discharge points arising due to the difference in freshwater and seawater by using the multispectral Landsat ETM+ signals. A case study in coastal regions around Mt. Chokaisan, Japan is performed. This study comprises three procedures: (1) computer simulation of the flow of submarine groundwater discharge in the study area, (2) performance of preliminary experiment on the band properties of the Landsat ETM+, (3) detection of the difference in water properties by using the Landsat multispectral bands. Our experimental results obtained by the Landsat ETM+ are in considerable agreement with the realities in the study area.

  • PDF

Effect of HRUs on Hydrologic and Environmental Factor Predictions Using SWAT Model (SWAT 모형에 의한 수문 및 환경인자 예측을 위한 HRU 수의 영향)

  • Jang, Kwang-Jin;Jang, Kyung-Soo;Seo, Young-Min;Yeo, Woon-Ki;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1573-1577
    • /
    • 2007
  • SWAT 모형을 사용하여 수문 및 환경인자들의 예측에 있어서 수문응답단위(Hydrological Response Unit, HRU) 수를 적절하게 결정하는 것은 매우 중요하다. SWAT 모형에서는 수문응답단위라는 계산단위를 통하여 모형의 입력매개변수를 생성하고 모의를 수행하기 때문이다. 본 연구에서는 SWAT모형에서 하천유역의 적절한 HRU 수를 결정하기 위하여 대상유역을 낙동강의 제 1지류이자 국제수문개발계획(International Hydrologic Project, IHP)의 국내 대표유역 중 하나인 위천유역으로 선정하였으며, 토지이용과 토양의 면적비를 조정함으로써 HRU 수를 여러 단계로 적용하여 유출량, 유사량 및 영양염류를 모의하였다. SWAT 모형의 적용을 위하여 위천 유역의 $DEM(30m{\times}30m)$, 토지이용도(1:25,000), 토양도(1:25,000) 등의 GIS 자료와 강우량 및 기상자료를 이용하였다. 본 논문은 위천 유역에 대한 적절한 HRU 수의 기준을 제시하였으며, 이와 같은 분석결과를 이용하여 모형의 입력자료 구축시간을 단축할 수 있어 차후 모형의 적용시에 모형의 적용 효율을 높일 수 있을 것으로 판단된다.

  • PDF

A Study on The Bed Scour at Stream Bridge during Flood - In the case of Jeongjang Bridge in Gurye - (홍수시 소하천 교량에서의 하상세굴 연구 - 구례 정장교를 중심으로 -)

  • Jung, Jae-Sung;Chung, Mahn;Kim, Min-Hwan
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1075-1080
    • /
    • 2002
  • The hydrological frequency of the flood in July 2000 at Seosi stream basin in Gurye and the bed scour of the stream channel were estimated to investigate the bed scour related with Jeongjang bridge collapse. The storm over the basin in July 2000, 303mm/day was 103year frequency rainfall and the equivalent flood was 2580cms. As the results of 100year and 30year flood application, flood level 30.78~31.38m and mean velocity 3.79~4.03m/s were appeared. And the purification project of Seosi stream increased the velocity of the section near to Jeongjang bridge by the improvement of conveyance at the downstream. The local scour at pier was the major factor of bed scour at Jeongjang bridge site and the total scour at pier No.6 was increased from 2.32m to 2.45m by the purification project.