• Title/Summary/Keyword: Hydrological Environment

Search Result 404, Processing Time 0.024 seconds

Evaluation of Reservoir Monitoring-based Hydrological Drought Index Using Sentinel-1 SAR Waterbody Detection Technique (Sentinel-1 SAR 영상의 수체 탐지 기법을 활용한 저수지 관측 기반 수문학적 가뭄 지수 평가)

  • Kim, Wanyub;Jeong, Jaehwan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.153-166
    • /
    • 2022
  • Waterstorage is one of the factorsthat most directly represent the amount of available water resources. Since the effects of drought can be more intuitively expressed, it is also used in variousstudies for drought evaluation. In a recent study, hydrological drought was evaluated through information on observing reservoirs with optical images. The short observation cycle and diversity of optical satellites provide a lot of data. However, there are some limitations because it is vulnerable to the influence of weather or the atmospheric environment. Therefore, thisstudy attempted to conduct a study on estimating the drought index using Synthetic Aperture Radar (SAR) image with relatively little influence from the observation environment. We produced the waterbody of Baekgok and Chopyeong reservoirs using SAR images of Sentinel-1 satellites and calculated the Reservoir Area Drought Index (RADI), a hydrological drought index. In order to validate the applicability of RADI to drought monitoring, it was compared with Reservoir Storage Drought Index (RSDI) based on measured storage. The two indices showed a very high correlation with the correlation coefficient, r=0.87, Area Under curve, AUC=0.97. These results show the possibility of regional-scale hydrological drought monitoring of SAR-based RADI. As the number of available SAR images increases in the future, it is expected that the utilization of drought monitoring will also increase.

Hydrological Evaluation of Rainwater Harvesting: 1. Hydrological Analysis (빗물이용의 수문학적 평가: 1. 수문해석)

  • Yoo, Chulsang;Kim, Kyoungjun;Yun, Zuhwan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.221-229
    • /
    • 2008
  • This study revised a model for hydrologically analyzing rainwater harvesting facilities considering their rainfall-runoff properties and the data available. This model has only a few parameters, which can be estimated with rather poor measurements available. The model has a non-linear module for rainfall loss, and the remaining rainfall excess (effective rainfall) is assumed to be inflow to the storage tank. This model has been applied for the rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology, and the Daejon World Cup Stadium. As a result, the runoff coefficients estimated were about 0.9 for the building roof as a rainwater collecting surface and about 0.18 for the playground. This result is coincident with that for designing the rainwater harvesting facilities to show the accuracy of model and the simulation results.

Phisical Environment of Sehwa-Songdang Lava Region

  • Byeon, Dae-Jun
    • Journal of the Speleological Society of Korea
    • /
    • no.85
    • /
    • pp.38-40
    • /
    • 2008
  • With regard to Jeju Special Self-governing Province's natural-spa tourist spot development project, this paper has investigated the natural environment of Sehwa-Songdang Lave Region. According to this study, the cave consists of many small caverns with poor cave formations. Due to unfavorable climate conditions in the cave, in addition, hydrological environment is also very poor. In terms of vegetation, the cave shows the general vegetation environment of Jeju.

Base Flow Estimation in Uppermost Nakdong River Watersheds Using Chemical Hydrological Curve Separation Technique (화학적 수문곡선 분리기법을 이용한 낙동강 최상류 유역 기저유출량 산정)

  • Kim, Ryoungeun;Lee, Okjeong;Choi, Jeonghyeon;Won, Jeongeun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.489-499
    • /
    • 2020
  • Effective science-based management of the basin water resources requires an understanding of the characteristics of the streams, such as the baseflow discharge. In this study, the base flow was estimated in the two watersheds with the least artificial factors among the Nakdong River watersheds, as determined using the chemical hydrograph separation technique. The 16-year (2004-2019) discontinuous observed stream flow and electrical conductivity data in the Total Maximum Daily Load (TMDL) monitoring network were extended to continuous daily data using the TANK model and the 7-parameter log-linear model combined with the minimum variance unbiased estimator. The annual base flows at the upper Namgang Dam basin and the upper Nakdong River basin were both analyzed to be about 56% of the total annual flow. The monthly base flow ratio showed a high monthly deviation, as it was found to be higher than 0.9 in the dry season and about 0.46 in the rainy season. This is in line with the prevailing common sense notion that in winter, most of the stream flow is base flow, due to the characteristics of the dry season winter in Korea. It is expected that the chemical-based hydrological separation technique involving TANK and the 7-parameter log-linear models used in this study can help quantify the base flow required for systematic watershed water environment management.

Assessment of Water Quality Characteristics in the Middle and Upper Watershed of the Geumho River Using Multivariate Statistical Analysis and Watershed Environmental Model (다변량통계분석 및 유역환경모델을 이용한 금호강 중·상류 유역의 수질특성평가)

  • Seo, Youngmin;Kwon, Kooho;Choi, Yun Young;Lee, Byung Joon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.520-530
    • /
    • 2021
  • Multivariate statistical analysis and an environmental hydrological model were applied for investigating the causes of water pollution and providing best management practices for water quality improvement in urban and agricultural watersheds. Principal component analysis (PCA) and cluster analysis (CA) for water quality time series data show that chemical oxygen demand (COD), total organic carbon (TOC), suspended solids (SS) and total phosphorus (T-P) are classified as non-point source pollutants that are highly correlated with river discharge. Total nitrogen (T-N), which has no correlation with river discharge and inverse relationship with water temperature, behaves like a point source with slow and consistent release. Biochemical oxygen demand (BOD) shows intermediate characteristics between point and non-point source pollutants. The results of the PCA and CA for the spatial water quality data indicate that the cluster 1 of the watersheds was characterized as upstream watersheds with good water quality and high proportion of forest. The cluster 3 shows however indicates the most polluted watersheds with substantial discharge of BOD and nutrients from urban sewage, agricultural and industrial activities. The cluster 2 shows intermediate characteristics between the clusters 1 and 3. The results of hydrological simulation program-Fortran (HSPF) model simulation indicated that the seasonal patterns of BOD, T-N and T-P are affected substantially by agricultural and livestock farming activities, untreated wastewater, and environmental flow. The spatial analysis on the model results indicates that the highly-populated watersheds are the prior contributors to the water quality degradation of the river.

Utilization of nitrate stable isotopes of Chydorus sphaericus (OF Müller) to elucidate the hydrological characteristics of riverine wetlands in the Nakdong River, South Korea

  • CHOI, Jong-Yun;KIM, Seong-Ki;KIM, Jeong-Cheol;LA, Geung-Hwan
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.461-468
    • /
    • 2019
  • Background: This study aimed to identify NO3--N sources using the stable isotope δ15N in Chydorus sphaericus (OF Müller), to investigate hydrological characteristics and nutrient states in artificial wetlands near the Nakdong River. Chydorus sphaericus is dominant in wetlands where aquatic plants are abundant, occurring in high density, and is sensitive to wetland water pollution, making it suitable for identification of NO3--N sources. Results: NO3--N sources for each wetland were strongly dependent on hydrological characteristics. Wetlands with sewage or rainfall/groundwater as their main sources had high levels of NO3--N, whereas wetlands with surface water as their main input had comparatively lower levels. Since wetlands with sewage and rainfall/groundwater as their main water sources were mostly detention ponds, their inputs from tributaries or the main river stream were limited and nutrients such as NO3--N easily become concentrated. Changes in NO3--N levels at each wetland were closely associated with δ15N of C. sphaericus. Interestingly, regression analysis also showed positive correlation between δ15N of C. sphaericus and NO3--N level. Conclusions: We conclude that the nitrate stable isotope (δ15N) of C. sphaericus can be used to elucidate the hydrological characteristics of riverine wetlands. This information is important for maintenance and conservation of artificial wetlands at the Nakdong River.

Evaluation of Urbanization Effect and Analysis of Hydrological Characteristics in the Gap River Catchment using SWAT (SWAT 모델을 이용한 갑천유역에 대한 수문 특성 분석 및 도시화 영향 평가)

  • Kim, Jeong-Kon;Son, Kyong-Ho;Noh, Jun-Woo;Jang, Chang-Lae;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.881-890
    • /
    • 2006
  • Hydrological characteristics and urbanization effects in the Gap river catchment were investigated employing the SWAT model. The hydrological characteristics analysis showed that total runoff in the whole catchment from 2001 to 2004 consists of 44% of groundwater flow, 6% of lateral flow and 50% of surface flow under year 2000 landuse conditions. The analysis of urbanization effect using different landuse maps for year 1975 and 2000 indicated that although 5% increase in urbanized areas did not significantly impact on the total runoff in the whole catchment, a sub-basin where urbanized area increased by 32% over the past 30 years showed $68{\sim}73%$ decrease in groundwater flow and $22{\sim}66%$ increase in surface flow. It was found that urbanization decreased overall soil moisture and percolation rate except for some increase in soil moisture during dry season. Urbanization effect was found more sensitive during a dry year which has less rainfall and higher evapotranspiration than during a wet year. Therefore, from the results of this study we could infer increased flood damage during wet season and dried stream during dry season due to urbanization. To conclude, the results of this study can provide fundamental information to the eco-friendly restoration project for the three major rivers (Gap-cheon, Yudeung-cheon and Daejeon-cheon) in Daejeon Metropolitan City.

Improving HSPF Model's Hydraulic Accuracy with FTABLES Based on Surveyed Cross Sections (실측 하천 단면자료를 이용한 HSPF 유역모델의 수리정확도 개선)

  • Shin, Chang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.582-588
    • /
    • 2016
  • The hydrological simulation program FORTRAN (HSPF) is a comprehensive watershed model that employs the hydraulic function table (FTABLE) (depth-area-volume-flow relationship) to represent the geometric and hydraulic properties of water bodies. The hydraulic representation of the HSPF model mainly depends on the accuracy of the FTABLES. These hydraulic representations determine the response time of water quality state variables and also control the scour, deposition, and transport of sediments in the water body. In general, FTABLES are automatically generated based on reach information such as mean depth, mean width, length, and slope along with a set of standard assumptions about the geometry and hydraulics of the channel, so these FTABLES are unable to accurately describe the geometry and hydraulic behavior of rivers and reservoirs. In order to compensate the weakness of HSPF for hydraulic modeling, we generated alternate method to improve the accuracy of FTABLES for rivers, using the surveyed cross sections and rating curves. The alternative method is based on the hydraulics simulated by HEC-RAS using the surveyed cross sections and rating curves, and it could significantly improve the accuracy of FTABLES. Although the alternate FTABLE greatly improved the hydraulic accuracy of the HSPF model, it had little effect on the hydrological simulation.

Hydrodynamic Modeling of Saemangeum Reservoir and Watershed using HSPF and EFDC (HSPF-EFDC를 이용한 새만금호와 유역의 수리 변화 모의)

  • Shin, Yu-Ri;Jung, Ji-Yeon;Choi, Jung-Hoon;Jung, Kwang Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.384-393
    • /
    • 2012
  • Saemangeum lake is an artificial lake created by reclamation works and an estuary embankment since 2006. The sea water flows into the lake by the operation of two sluice gates, and the freshwater enters into the lake by the upper streams. For the reflection of hydrology and hydrodynamics effects in Saemangeum area, a hydrodynamics model was developed by connecting Hydrological Simulation Program with Fortran (HSPF) and Environmental Fluid Dynamic Code (EFDC). The HSPF was applied to simulate the freshwater discharge from the upper steam watershed, and the EFDC was performed to compute water flow, water temperature, and salinity based on time series from 2008 to 2009. The calibration and validation are performed to analyze horizontal and vertical gradients. The horizontal trend of model simulation results is reflected in the trend of observed data tolerably. The vertical trend is conducted an analysis of seasonal comparisons because of the limitation of vertically observed data. Water temperature reflects on the seasonal changes. Salinity has an effect on the near river input spots. The impact area of salinity is depending on the sea water distribution by gate operation, mainly.