• Title/Summary/Keyword: Hydrologic unit

Search Result 126, Processing Time 0.025 seconds

Suggestion of Synthetic Unit Hydrograph Method Considering Hydrodynamic Characteristic on the Basin (유역의 동수역학적 특성을 고려한 합성단위도 기법의 제시)

  • Kim, Joo Cheol;Choi, Yong Joon;Jeong, Dong Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.47-55
    • /
    • 2011
  • This study suggests new synthetic unit hydrograph method considering hydrodynamic characteristic on the basin. The suggested method based on width function GIUH, and the procedure is summarized as follows; 1) Draw up a travel distance distribution map (width function) which is raster of length between from center of individual cells to the outlet by GIS. 2) Calculation of travel time distribution map (rescaled width function) by hydrodynamic parameters and travel distance distribution map. 3) Derivation of IUH and Duration UH from rescaled width function. 4) Comparison of shape of UH between suggested method and existing synthetic unit hydrograph methods. The target basins are selected Ipyeong and Tanbu subwatershed in the Bocheong Basin. The target basins are similar scale (watershed area), but different drainage structure (drainage density et al.). Therefore we anticipate that there are different hydrologic response functions because different hydrodynamic characteristics. As a result of derivation of UH, existing synthetic unit hydrograph methods are similar shape of UHs about Ipyeong and Tanbu watersheds, but the suggested method is different shape of ones. As a result of application to observed data, the peak discharge by suggested method is similar to existing synthetic unit hydrograph methods, but the peak time is well correspondence between those. Henceforth, if the suggested method combines with the rational velocity estimation method, it is useful method for synthetic of UH in ungauged watershed.

Estimation of Appropriate Infiltration Rate and the Effects of the Flowerbed Type Infiltration System (화단형 침투시설의 단위설계침투량 산정 및 효과분석)

  • Han, Young-Hae;Lee, Tae-Goo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.140-147
    • /
    • 2012
  • This study developed a flowerbed type infiltration system that could control the amount of runoff discharge under a certain level estimated its proper design infiltration rate, and analyzed the effects of its implementation. Analyzing the performance of infiltration system is the one of the essential processes that should be under review to predict its effects after implementation when a rainwater infiltration system is included in a district-based plan. To estimate the unit design infiltration rate of this system, the runoff decrease effect was analyzed by varying the unit infiltration rate of the system applied to the parking lot adjacent to the Korea Institute of Construction Technology laboratory building by using a water balance analysis program. After varying the unit design infiltration to $0.1{\sim}3m^3/m^2.day$ to analyze the variation in the rate of runoff, 80% of the runoff was infiltrated at $1.0m^3/m^2.day$, and the unit infiltration design rate at the time was 0.0416(m3/m2.hr). It was also found that the unit design infiltration rate obtained from a field infiltration test of the developed system was about $0.045m^3/hr$. Based on this study, it was possible that infiltration rate is estimated to consider the economic scale and environmental effect. It is significant to apply the spatial plan of rainwater infiltration system as green infrastructure.

GIUH Model for River Runoff Estimation (하천 유출량 산정을 위한 GIUH모델)

  • 이순탁;박종권
    • Water for future
    • /
    • v.20 no.4
    • /
    • pp.267-278
    • /
    • 1987
  • This study aims at the decision of geomorphologic instantaneous unit hydrograph(GIUH) model parameter fore the ungaged or the data deficiented Basin, to analyze rainfall runoff relation in river basin by applying queueing theory with geomorphologic factors.The concept of GIUH model is based upon the principle of queueing theory of rain drops which may follow many possible routes during rainfall period within watershed system to ist outlet. Overland flow and stream flow can be simulated, respectively, by linear reservoir and linear channel conceptual models. Basically, the model is a mon-lineal and time variant hydrologic system model. The techniques of applying are adopted subarea method and mean-value method, the watershed is divided according to its stream number and order. To prove it to be applicable, the GIUH model is applied to the Wi-Stream basin of Nak-Dong River(Basin area; 475.53$\textrm{km}^2$), southen part of Korea. The simulated and the observed direct runoff hydrographs are compared with the peak discharge, times to peak and coefficients of efficiency, respectively, and the results show quite satisfactory.Therefore, th GIUH model can be extensively applied for the runoff analysis in the ungaged and the data deficiented basin.

  • PDF

A study on the Evaluation for the Design Flood of Ungauged Small River Basins (미계측 중소하천의 계획홍수량산정에 관한 연구)

  • 침순보;안보훈
    • Water for future
    • /
    • v.9 no.2
    • /
    • pp.101-114
    • /
    • 1976
  • This paper presents a hydrologic method of probabilistic design flood calculation for ungauged small river basins. It is based on the study and analysis of the physiographic characteristics of the river basin for which stream flow records may not be available. Rainfall data is used at nearby station which has the rainfall intensity-duration-frequency relations. Musim cheon, second tributary of the Guem river, is selected for the sample study. Design floods for the stream reaches are computed by the Rational formula, the runoff coefficients being determined with the physiographic data such as soil type, land use and vepetal covers. Derived unit hydrograph at conneted main river basin is used to compute the peak flood discharge. Kajiyama formula and modified Kajiyama formula are used to calculated the most probable maximum flood discharge. The result of this study shows that synthesized unit hydrograph method is more accurate and applicable way to com pute design flood for ungauged small river basins.

  • PDF

Hydrologic Re-Analysis of Muskingum Channel Routing Method: A Linear Combination of Linear Reservoir and Linear Channel Models (Muskingum 하도추적방법의 수문학적 재해석: 선형저수지모형과 선형하천모형의 선형결합)

  • Yoo, Chul-Sang;Kim, Ha-Young
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1051-1061
    • /
    • 2010
  • This study hydrologically re-analysed the Muskingum channel routing method to represent it as a linear combination of the linear channel model considering only the translation and the linear reservoir model considering only the storage effect. The resulting model becomes a kind of instantaneous unit hydrograph, whose parameters are identical to those of the Muskingum model. That is, the outflow occurs after the routing interval ${\Delta}t$ or concentration time $T_c$, and among the total amount of inflow, the x portion is translated by the linear channel model and the remaining (1-x) portion is routed by the linear reservoir model with the storage coefficient ��$K_c$. The application result of both the Muskingum channel routing method and its corresponding instantaneous unit hydrograph to an imaginary channel showed that these two models are basically identical. This result was also assured by the application to the channel flood routing to the Kumnam and Gongju Station for the discharge from the Daechung Dam.

Sensitivity Analysis of GIUH Model Applied to DEM Resolutions and Threshold Areas (GIUH적용을 위한 DEM 격자크기 및 Threshold Area의 민감도분석)

  • Cho, Hyo-Seob;Jung, Kwan-Sue;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.799-810
    • /
    • 2003
  • Hydrologic models generally require land surface analysis to different topographic parameters defined as direct or indirect input variables to the model. Specially GIS supply the these parameters from digital data set of land surface The sensitivity analysis to DEM(Digital Elevation Model) resolution and the threshold area are of GIS extracted digital data set applied GIUH(Geomorphological Instantaneous Unit Hydrograph)model is investigated. Also it is compared the responses of GIUH model as input data of stream networks from digital data set(blue line) of NGIS and those extracted from DEM of various grid sizes. The results shows that the GIUH model is significantly affected by the DEM resolution and threshold area. According to the results, DEM grid size is suitable from 25m to 50m. Also threshold area is in the range of 30%∼50% for exceedance probability.

Characteristics of Water Quantity and Quality of the Anyangcheon using SWAT Model and Calculation Result of EMC (SWAT 모형과 EMC 산정결과를 이용한 안양천의 수량 및 수질 특성)

  • Chung, Eun-Sung;Lee, Kil Seong;Shin, Mun-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.648-657
    • /
    • 2006
  • Characteristics of water quantity and quality of the Anyangcheon were analyzed through many field measurements and the distributed hydrologic simulation model, Soil and Water Assessment Tool (SWAT). Event mean concentrations (EMCs) and baseflow mean concentrations were calculated from the data and the daily runoff were simulated by SWAT. The runoff was divided into the direct runoff and the baseflow. Using those values and quantity and quality data of release from the wastewater treatment plant (WWPT), unit loads of BOD, COD, SS, $NO_2-N$, $NO_3-N$, $NH_3-N$, and Dis-P were derived. EMCs of BOD and SS were even higher than the baseflow mean concentrations. The total runoff from October to April (7 months) of 2004 was just 13.5%, since the rainfall usually is concentrated in summer season. Futhermore BOD and SS were loaded during the event by 50.9% and 70.9%, respectively and over three quarters of total COD, $NO_2-N$, $NO_3-N$, $NH_3-N$, and Dis-P were flowed into the Anyangcheon during the remaining period. Therefore, the efficiency of WWPT for COD, $NO_2-N$, $NO_3-N$, $NH_3-N$, and Dis-P should be intensified from Oct. to Apr. and the runoff quality management of BOD and SS should be planned during the summer season.

Assessment of Uncertainty for Applying Nash's Model Using the Hydrologic Similarity of Basins (유역의 수문학적 상사성을 이용한 Nash 모형의 불확실성 평가)

  • Seong, Kee-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.399-411
    • /
    • 2003
  • An approach determining a confidence interval of Nash's observed mean instantaneous unit hydrograph is developed. In the approach, both two parameters are treated as correlated gaussian random variables based on the theory of Box-Cox transformation and the regional similarity relation, so that linear statistical parameter estimation is possible. A parametric bootstrap method is adopted to give the confidence interval of the mean observed hydrograph. The proposed methodology is also applicable to estimate the parameters of Nash's model for un-gauged basins. An application to a watershed has shown that the proposed approach is adequate to assess the uncertainty of the Nash's hydrograph and to evaluate parameters for un-gauged basins.

Runoff Analysis Based on the Number of Hydrologic Response Unit Using SWAT Model (SWAT모형을 이용한 HRU 분할에 따른 유출량 분석)

  • Kim, Dae-Young;Lee, C㏊ng-Won;Park, Nam-Hee;Kim, Chul
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.436-440
    • /
    • 2007
  • ArcView와 연동하는 SWAT(Soil and Water Assessment Tool)은 수문평가 도구로써 사용되는 모형이다. 이러한 SWAT모형은 유역의 서로 다른 표면 특성을 반영할 수 있도록 대상유역을 몇 개의 소유역으로 나누고 소유역 내에서 유사한 특성을 나타내는 HRU으로 세분화한다. 모형에서는 유역부분과 수체부분으로 나누어 모의가 이루어지며 각 소유역에서 물수지식에 따라 강우량, 지하수로의 침투량, 증발산량, 그리고 표면 유출량을 산정한다. SWAT 모형은 많은 입력 자료가 있으며 그 중에서도 소유역 개수와 HRU개수가 SWAT 모형의 결과에 많은 영향을 미칠 것으로 생각되어 본 논문에서는 이에 대한 영향을 분석하였다. 연구 대상지역은 함평천 유역으로 전라남도 함평군과 무안군 사이에 위치하고 있으며 유역의 면적은 $196.4km^2$이고 유역의 대부분이 산지와 농업지역으로 이루어져 있다. SWAT 모형을 모의하기 위한 지형자료는 1:25,000 수치지도, 농업과학기술원의 1:25,000 정밀토양도, 환경부의 토지피복도를 사용하였고 기상자료와 강우자료는 목포기상관측소의 자료를 사용하였다. 매개변수를 추정하기위해 환경부의 오염총량관리 세유역을 사용하였으며 모의 결과를 실측치와 비교함으로서 매개변수를 추정하였다. 추정된 매개변수를 이용하고 연구대상지역의 소유역 개수와 HRU개수를 여러 가지로 변화시켜 모의하였으며 그 결과를 실측치와 비교하여 최적 소유역 개수와 HRU 개수를 추정하였다. 본 연구의 결과는 SWAT모형 수행시 소유역의 면적에 대한 객관적인 기준을 제시할 수 있을 것이다.

  • PDF

Determination of Effective Rainfall by US SCS Method and Regression Analysis (SCS방법 및 회귀분석에 의한 유출 강우량 결정)

  • 선우중호;윤용남
    • Water for future
    • /
    • v.10 no.2
    • /
    • pp.101-111
    • /
    • 1977
  • The analysis performed here is aimed to increase the familiarity of hydrologic process especially for the small basins which are densely gaged. Kyung An and Mu Shim river basins are selected as a represectative basin according to the criteria which UNESCO has establisheed back in 1964 and being operated under the auspice of Ministry of Construction. The data exerted from these basins is utilized for the determination of the characteristics of precipitation and runoff phenomena for the small basin, which is considerred as a typical Korean samll watershed. The methodology developed by Soil Conservation Service, USA for determination of runoff value from precipitation is applied to find the suitability of the method to Korean River Basin. The soil cover complex number or runoff curve number was determined by considering the type of soil, soil cover, land use and other factor such as antecent moisture content. The averag values of CN for Kyung An and Mushim river basins were found to be 63.9 and 63.1 under AMC II, however, the values obtained from soil cover complex was less than those from total precipitation and effective precicpitation by 10-30%. It may be worth to note that an attention has to be paid in the application of SCS method lo Korean river basin by adjusting 10-30% increase to the value obtained from soil cover complex. Finally, the design flood hydrograph was consturcted by employing unit hydrograph technique to the dimensionless mass curve. Also a stepwise multiple regression was performed to find the relationship between runoff and API, evapotranspiration rate, 5 days antecedent precipitation and daily temperature.

  • PDF