• Title/Summary/Keyword: Hydrologic estimation

Search Result 236, Processing Time 0.028 seconds

Estimation of Direct Runoff Variation According to Land Use Changes in Jeju Island (제주도 토지이용변화에 따른 직접유출량 변화 추정)

  • Ha, Kyoo-Chul;Park, Won-Bae;Moon, Deok-Cheol
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.343-356
    • /
    • 2009
  • SCS method was applied to make the assessments of direct runoff according to land use changes in Jeju island. Land uses were obtained from 5 year-period remote sensing time series data from 1975 to 2000 which are provided by Water Management Information System (WAMIS). Hydrologic soil groups were categorized based on soil series of National Academy of Agricultural Sciences (NAAS), and permeable geologic structures such as Sumgol, Gotzawal and so on. The land uses of Jeju island are obviously characterized by urban-agricultural areas increases, and forest areas decrease. According to land use changes, curve number (CN) for Jeju island was consistently increased from 65.3 in 1975 to 69.6 in 2000. From 1975 to 2000, the amount of direct runoff and ratios increased due to CN changes. When the rainfall data in 1995 was applied to each year, the direct runoff amounts were $299.0{\sim}351.6\;mm$, and runoff ratios were $15.1{\sim}17.7%$. In the case of the application of the rainfall data in 2000, the direct runoff amounts were $136.9{\sim}161.5\;mm$, and runoff ratios were $9.7{\sim}11.5%$. Since direct runoff can be closely related to groundwater recharge and sustainable groundwater yield, the groundwater influence caused by land use changes or district exploitations should be considered for the reasonable water management and development in Jeju island.

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks (II) Development of Groundwater Flow Model (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(II) -산사면에서의 지하수위 예측 모델의 개발-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.5-20
    • /
    • 1992
  • The physical-based and lumped-parameter hydrologic groundwater flow model for predicting the rainfall-triggered rise of groundwater levels in hillside slopes is developed in this paper to assess the risk of landslides. The developed model consists of a vertical infiltration model for unsaturated zone linked to a linear storage reservoir model(LSRM) for saturated zone. The groundwater flow model has uncertain constants like soil depttL slope angle, saturated permeability, and potential evapotranspiration and four free model parameters like a, b, c, and K. The free model parameters could be estimated from known input-output records. The BARD algorithm is uses as the parameter estimation technique which is based on a linearization of the proposed model by Gauss -Newton method and Taylor series expansion. The application to examine the capacity of prediction shows that the developed model has a potential of use in forecast systems of predicting landslides and that the optimal estimate of potential 'a' in infiltration model is the most important in the global optimum analysis because small variation of it results in the large change of the objective function, the sum of squares of deviations of the observed and computed groundwater levels. 본 논문에서는 가파른 산사면에서 산사태의 발생을 예측하기 위한 수문학적 인 지하수 흐름 모델을 개발하였다. 이 모델은 물리적인 개념에 기본하였으며, Lumped-parameter를 이용하였다. 개발된 지하수 흐름 모델은 두 모델을 조합하여 구성되어 있으며, 비포화대 흐름을 위해서는 수정된 abcd 모델을, 포화대 흐름에 대해서는 시간 지체 효과를 고려할 수 있는 선형 저수지 모델을 이용하였다. 지하수 흐름 모델은 토층의 두께, 산사면의 경사각, 포화투수계수, 잠재 증발산 량과 같은 불확실한 상수들과 a, b, c, 그리고 K와 같은 자유모델변수들을 가진다. 자유모델변수들은 유입-유출 자료들로부터 평가할 수 있으며, 이를 위해서 본 논문에서는 Gauss-Newton 방법을 이용한 Bard 알고리즘을 사용하였다. 서울 구로구 시흥동 산사태 발생 지역의 산사면에 대하여 개발된 모델을 적용하여 예제 해석을 수행함으로써, 지하수 흐름 모델이 산사태 발생 예측을 위하여 이용할 수 있음을 입증하였다. 또한, 매개변수분석 연구를 통하여, 변수 a값은 작은 변화에 대하여 목적함수값에 큰 변화를 일으키므로 a의 값에 대한 최적값을 구하는 것이 가장 중요한 요소라는 결론을 얻었다.

  • PDF

A Derivation of Rainfall Intensity-Duration-Frequency Relationship for the Design of Urban Drainage System in Korea (우리나라 도시배수시스템 설계를 위한 확률강우강도식의 유도)

  • Lee, Jae-Jun;Lee, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.403-415
    • /
    • 1999
  • This study is to derive the rainfall intensity formula based on the representative probability distribution in Korea. The 11 probability distributions which has been widely used in hydrologic frequency analysis are applied to the annual maximum rainfall. The parameters of each probability distribution are estimated by method of moments, maximum likelihood method and method of probability weighted moments. Four tests such as $x^2$-test, Kolmogorv-Smirnov test, difference test and modified difference test are used to determine the goodness of fit of the distributions. The homogeneous tests (Mann-Whitney U test, Kruskal-Wallis one-way analysis of variance of nonparametric test) are applied to find the stations with rainfall homogeneity. The results of homogeneous tests show that there is no representative appropriate distribution for the whole duration in Korea. The whole region could be divided into five zones for 12-durations. The representative probability distribution of each divided zone for 12-durations was determined. The GEV distribution for I,II,V zones and the 3-parameter Weibull distribution for III,IV zones were determined as the representative probability distribution. The rainfall were obtained from representative probability distribution for the selected return periods. Rainfall intensity formula was determined by linearization technique for the rainfall.

  • PDF

Estimation or Threshold Runoff on Han River Watershed (한강유역 한강유출량 산정)

  • Kim, Jin-Hoon;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.2 s.163
    • /
    • pp.151-160
    • /
    • 2006
  • In this study, threshold runoff which is a hydrologic component of flash flood guidance(FFG) is estimated by using Manning's bankfull flow and Geomorphoclimatic Instantaneous Unit Hydrograph(GcIUH) methods on Han River watershed. Geographic Information System(GIS) and 3' Digital Elevation Model database have been used to prepare the basin parameters of a very fine drainage area($1.02\~56.41km^2$), stream length and stream slope for threshold runoff computation. Also, cross-sectional data of basin and stream channel are collected for a statistical analysis of regional regression relationships and then those are used to estimate the stream parameters. The estimated threshold runoff values are ranged from 2 mm/h to 14 mm/6hr on Han River headwater basin with the 1-hour duration values are$97\%$ up to 8mm and the 6-hour values are $98\%$ up to 14mm. The sensitivity analysis shows that threshold runoff is more variative to the stream channel cross-sectional factors such as a stream slope, top width and friction slope than the drainage area. In comparisons between the computed threshold runoffs on this study area and the three other regions in the United States, the computed results on Han River watershed are reasonable.

Hydrological Assessment of Different Phase of ENSO through Estimation of Integrated Risk Index: A Case Study of the Han River basin (통합위험지수 산정을 통한 서로 다른 ENSO의 수문학적 영향 평가: 한강유역을 중심으로)

  • Yoon, Sun-Kwon;Kim, Jong-Suk;Lee, Joo-Heon;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.982-982
    • /
    • 2012
  • 본 연구에서는 우리나라의 중 소규모 유역의 수문학적 위험도 분석을 위하여 한강유역을 대상으로 통합위험지수(IRI: Integrated Risk Index)를 산정하였으며, El Ni$\tilde{n}$o-Southern Oscillation (ENSO)에 의한 대규모 대기순환 패턴의 변화가 한강 유역의 통합위험지수 변화에 미치는 영향을 평가하였다. ENSO자료는 전통적인 El Ni$\tilde{n}$o에 해당하는 Cold-tongue (CT) El Ni$\tilde{n}$o와 중앙태평양 부근의 이상적인 해수면 온도 상승에 의한 Warm-pool (WP) El Ni$\tilde{n}$o, 그리고 해수면 온도가 이상적으로 낮게 관측되는 La Ni$\tilde{n}$a 기간으로 구분하였으며, 각 기간 중 가장 강한 ENSO가 발생한 해(CT El Ni$\tilde{n}$o, 1998; WP El Ni$\tilde{n}$o, 2005; La Ni$\tilde{n}$a, 2000)를 대상으로 통합위험지수를 산정하였다. 통합위험지수는 수문학적 요인(Hydrologic Components), 사회 경제적 요인(Socio-Economic Components)과 생태적 요인(Ecological Components)으로 구분하였고, 엔트로피(entropy) 기법을 통하여 각 인자와 요인별 가중치를 적용하였다. 중권역별 통합위험지수의 평가는 5개의 계급구간(Very High, High, Medium, Low, Very Low)으로 구분하였다. 분석결과, CT El Ni$\tilde{n}$o해의 유역평균 IRI 값은 0.58, WP El Ni$\tilde{n}$o해의 IRI 값은 0.57로 비슷한 결과를 보였으나, La Ni$\tilde{n}$a해에는 IRI 값이 0.41로 낮게 나타났다. CT와 WP El Ni$\tilde{n}$o해에는 한강 서쪽일부 중권역에서 통합위험지수가 높게 나타났으며, La Ni$\tilde{n}$a해에는 한강 중 동부 대부분 유역에서 낮게 분석되었다. 향후 유역별 통합위험지수 산정과 더불어 서로 다른 형태의 ENSO에 따른 수자원 변동 예측이 이루어진다면, 수자원의 효율적인 관리와 안정적인 용수공급에 도움을 줄 것으로 사료되며, 이는 유역별 수자원의 취약성 평가 및 위험도 분석을 위한 기초자료로 활용이 가능하리라 사료된다.

  • PDF

Estimation of Watershed Parameters and Runoff Computation Using GIS (GIS를 이용한 유역매개변수의 추정 및 유출량 산정)

  • Lee, Im-Keun;Ahn, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.11-24
    • /
    • 2007
  • There exist various difficulties in runoff analysis due to many ungauged basins in Korea and the runoff phenomena is also more and more complicated by the change of geologic characteristics due to the urbanization. So, we use GIS technique which is widely used in hydrologic field and cell runoff concept for the fast and effective runoff simulation. This study uses the observations of 6 stage stations in Wi-Cheon watershed and simulates the watershed parameters by using WMS model. We construct DEM by the grids which are consisted based on the criteria of minimum area according to land use. The cell runoff is estimated by an average weighted method using mean annual streamflow and mean maximum daily streamflow obtained from six stage stations. The runoff ratio at arbitrary site is estimated by conducting the direction analysis of streamflow and by removing sinkhole. We compare the simulated and observed runoffs and know that the simulated runoff shows the valid results. So, we could use the geographical information and cell runoff concept for more fast and effective runoff simulation studies.

A Study on the Estimation of the Threshold Rainfall in Standard Watershed Units (표준유역단위 한계강우량 산정에 관한 연구)

  • Choo, Kyung-Su;Kang, Dong-Ho;Kim, Byung-Sik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • Recently, in Korea, the risk of meteorological disasters is increasing due to climate change, and the damage caused by rainfall is being emphasized continuously. Although the current weather forecast provides quantitative rainfall, there are several difficulties in predicting the extent of damage. Therefore, in order to understand the impact of damage, the threshold rainfall for each watershed is required. The damage caused by rainfall occurs differently by region, and there are limitations in the analysis considering the characteristic factors of each watershed. In addition, whenever rainfall comes, the analysis of rainfall-runoff through the hydrological model consumes a lot of time and is often analyzed using only simple rainfall data. This study used GIS data and calculated the threshold rainfall from the threshold runoff causing flooding by coupling two hydrologic models. The calculation result was verified by comparing it with the actual case, and it was analyzed that damage occurred in the dangerous area in general. In the future, through this study, it will be possible to prepare for flood risk areas in advance, and it is expected that the accuracy will increase if machine learning analysis methods are added.

Analysis of Streamflow Characteristics of Boryeong-dam Watershed using Global Optimization Technique by Infiltraion Methods of CAT (CAT 모형의 침투해석방법별 전역최적화기법을 이용한 보령댐 유역의 유출 특성 변화 분석)

  • Park, Sanghyun;Kim, Hyeonjun;Jang, Cheolhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.412-424
    • /
    • 2019
  • In this study, the changes of the streamflow characteristics of the watershed were analysed depending on the infiltration methods of CAT. The study area, Boryeong-dam watershed located in Chungcheongnam-do area, has been suffered from severe drought in recent years and stabilized regarding on the storage rate through efforts such as constructing a channel connecting the upstream of Boryeong-dam from the downstream of the Geum river. In this study, the effects of soil infiltration parameters on the watershed streamflow characteristics were analyzed by the infiltration methods of CAT such as Rainfall Excess, Green&Ampt and Horton. And the parameter calibrations were conducted by SCEUA-P, a global optimization technique module of the PEST, the package for parameter optimization and uncertainty analysis, to compare the yearly variations of soil parameters for infiltration methods of CAT. In addition, the streamflow characteristics were analyzed for three infiltration methods by applying three different scenarios, such as applying calibrated parameters for every years to simulate the model for each years, applying calibrated parameters for the entire period to simulate the model for entire period, and applying the average value of yearly calibrated parameters to simulate the model for entire period.

Drought evaluation using unstructured data: a case study for Boryeong area (비정형 데이터를 활용한 가뭄평가 - 보령지역을 중심으로 -)

  • Jung, Jinhong;Park, Dong-Hyeok;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1203-1210
    • /
    • 2020
  • Drought is caused by a combination of various hydrological or meteorological factor, so it is difficult to accurately assess drought event, but various drought indices have been developed to interpret them quantitatively. However, the drought indexes currently being used are calculated from the lack of a single variable, which is a problem that does not accurately determine the drought event caused by complex causes. Shortage of a single variable may not be a drought, but it is judged to be a drought. On the other hand, research on developing indices using unstructured data, which is widely used in big data analysis, is being carried out in other fields and proven to be superior. Therefore, in this study, we intend to calculate the drought index by combining unstructured data (news data) with weather and hydrologic information (rainfall and dam inflow) that are being used for the existing drought index, and to evaluate the utilization of drought interpretation through verification of the calculated drought index. The Clayton Copula function was used to calculate the joint drought index, and the parameter estimation was used by the calibration method. The analysis showed that the drought index, which combines unstructured data, properly expresses the drought period compared to the existing drought index (SPI, SDI). In addition, ROC scores were calculated higher than existing drought indices, making them more useful in drought interpretation. The joint drought index calculated in this study is considered highly useful in that it complements the analytical limits of the existing single variable drought index and provides excellent utilization of the drought index using unstructured data.

A study on estimation of lowflow indices in ungauged basin using multiple regression (다중회귀분석을 이용한 미계측 유역의 갈수지수 산정에 관한 연구)

  • Lim, Ga Kyun;Jeung, Se Jin;Kim, Byung Sik;Chae, Soo Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1193-1201
    • /
    • 2020
  • This study aims to develop a regression model that estimates a low-flow index that can be applied to ungauged basins. A total of 30 midsized basins in South Korea use long-term runoff data provided by the National Integrated Water Management System (NIWMS) to calculate average low-flow, average minimum streamflow, and low-flow index duration and frequency. This information is used in the correlation analysis with 18 basin factors and 3 climate change factors to identify the basin area, average basin altitude, average basin slope, water system density, runoff curve number, annual evapotranspiration, and annual precipitation in the low-flow index regression model. This study evaluates the model's accuracy by using the root-mean-square error (RMSE) and the mean absolute error (MAE) for 10 ungauged, verified basins and compares them with the previous model's low-flow calculations to determine the effectiveness of the newly developed model. Comparative analysis indicates that the new regression model produces average low-flow, attributed to the consideration of varied basin and hydrologic factors during the new model's development.