• Title/Summary/Keyword: Hydrologic estimation

Search Result 237, Processing Time 0.021 seconds

Estimation of Synthetic Unit Hydrograph Using Geospatial Shape Factors and Nash Model in Mid-size Watershed (중소규모유역의 지형공간적 형상계수를 이용한 Nash 모형기반의 합성단위도 산정)

  • Kim, Jin Gyeom;Kim, Jong Min;Kang, Boo Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.547-558
    • /
    • 2013
  • Improved methodology of Synthetic Unit Hydrograph (SUH) utilized generally in hydrologic design work was suggested. In this study, regression analysis between peak hydrological data and geospatial data was applied to estimate specific peak flow and peak time for determining shape of SUH. Regression formulas for specific peak flow with respect to shape factors show higher coefficient of determination (0.73~0.81) than the ones with geospatial components only (0.52~0.69). The areal limitation of unit hydrograph application is regarded as 500~700 $km^2$. The validation through rainfall-runoff simulation shows encouraging results that relative error is 1.7~29.0%(Avg. 11.6%) for the case of using SUH developed in this study and 35.0~ 64.9% (Avg. 46.7%) for the SUH in the previous study except for the extraordinary cases.

A Study on the Simulation of Daily Precipitation Using Multivariate Kernel Density Estimation (다변량 핵밀도 추정법을 이용한 일강수량 모의에 대한 연구)

  • Cha, Young-Il;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.595-604
    • /
    • 2005
  • Precipitation simulation for making the data size larger is an important task for hydrologic analysis. The simulation can be divided into two major categories which are the parametric and nonparametric methods. Also, precipitation simulation depends on time intervals such as daily or hourly rainfall simulations. So far, Markov model is the most favored method for daily precipitation simulation. However, most models are consist of state transition probability by using the homogeneous Markov chain model. In order to make a state vector, the small size of data brings difficulties, and also the assumption of homogeneousness among the state vector in a month causes problems. In other words, the process of daily precipitation mechanism is nonstationary. In order to overcome these problems, this paper focused on the nonparametric method by using uni-variate and multi-variate when simulating a precipitation instead of currently used parametric method.

Analysis of Variation for Drainage Structure with Flow Direction Methods on the Basis of DEM (DEM을 기반으로 한 흐름방향 모의기법에 따른 배수구조의 변동성 해석)

  • Park, Hye-Sook;Kim, Joo-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.391-398
    • /
    • 2018
  • The main purpose of this study is to suggest and recommend the more reliable flow direction methods within the framework of DEM and power law distribution, by investigating the existing methodologies. To this end SFD (single flow direction method), MFD (multiple flow direction method) and IFD (Infinite flow direction method) are applied to analyze the determination of a flow direction for the water particles as seen in the Jeonjeokbigyo basin, and then assessed with respect to the variation of flow accumulation in that region. As the main results revealed, the study showed the different patterns of flow accumulation are found out from each applications of flow direction methods utilized in this study. This brings us to understand that as the flow dispersion on DEM increases, in this case the contributing areas to the outlet grow in sequence of SFD, IFD, MFD, but it is noted that the contribution of individual pixels into outlet decreases at that time. In what follows, especially with the MFD and IFD, the result tends to make additional hydrologic abstraction from rainfall excess, as noted due to the flow dispersion within flow paths on DEM. Based on the parameter estimation for a power law distribution, which is frequently used for identify the aggregation structure of complex system, by maximum likelihood flow accumulation can be thought of as a scale invariance factor. In this regard, the combination of flow direction methods could give rise to the more realistic water flow on DEM, as revealed through the separate flow direction methods as utilized for dispersion and aggregation effects of water flow within the available different topographies.

A Characteristic Analysis of Critical Duration of Design Rainfall in Medium Sized Catchment (중규모 하천유역에서 임계지속기간 특성 분석)

  • Lee, Jung-Sik;Park, Jong-Young;Kim, Seok-Dong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.135-144
    • /
    • 2009
  • The objective of this study is to examine the effect of hydrological factors on critical durations, and to analyze the relationship between the watershed characteristics and the critical duration of design rainfall in the medium sized catchments. Hydrological factors are used to return period, probable intensity formula, hydrograph method, effective rainfall and temporal pattern of design rainfall. Hydrologic analysis has done over the 44 medium sized catchments with $50{\sim}5,000{\beta}{\yen}$. Watershed characteristics such as catchment area, channel length, channel slope, catchment slope, time to peak, concentration of time and curve number were used to simulate correlation analysis. All of hydrological factors except return period influence to the critical duration of design rainfall. Also, it is revealed that critical duration is influenced by the watershed characteristics such as area, channel length, channel slope and catchment slope. Multiple regression analysis using watershed characteristics is carried out for the estimation of relationship among these. And the 7 type equations are proposed by the multiple regression using watershed characteristics and critical duration of design rainfall. The determination coefficient of multiple regression equations shows $0.96{\sim}0.97$.

Feasibility Mapping of Groundwater Yield Characteristics using Weight of Evidence Technique based on GIS in the Pocheon Area (GIS 기반 Weight of Evidence 기법을 이용한 포천 지역의 지하수 산출특성 예측도 작성)

  • Heo Seon-Hee;Lee Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.493-503
    • /
    • 2005
  • In this study, the weight of evidence(WofE) technique based on GIS was applied to spatially estimate the groundwater yield characteristics at the Pocheon area In Gyunggi-do. The groundwater preservation depends on many hydro-geologic factors that include hydrologic data, land-use data, topographic data, geological map and other natural materials collected at the site, even with man-made things. All these data can be digitally processed and managed by GIS database. In the applied technique of WofE, the prior probabilities were estimated as the factors that affect the yield on lineament, geology, drainage pattern or river system density, landuse and soil. We calculated the value of the weight values, W+ and W-, of each factor and estimated the contrast value of it. Results by the groundwater yield characteristic computation using this scheme were presented feasibility map in the form of the posterior probability to the consideration of in-situ samples. It is concluded that this technique is regarded as one of the effective techniques for the feasibility mapping related to the estimation of groundwater-bearing potential zones and its spatial pattern.

The Analysis of Flood in an Ungauged Watershed using Remotely Sensed and Geospatial Datasets (I) - Focus on Estimation of Flood Discharge - (원격탐사와 공간정보를 활용한 미계측 유역 홍수범람 해석에 관한 연구(I) - 홍수량 산정을 중심으로 -)

  • Son, Ahlong;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.781-796
    • /
    • 2019
  • This study attempted to simulate the flood discharge in the Duman River basin containing Hoeryong City and Musan County of North Korea where were damaged from Typhoon Lionrock on August, 2016. For hydrological modelling remotely sensed datasets were used to estimate watershed properties and hydrologic factors because the basin is ungauged where hydrological observation is not exist or sparse. For validation we applied our methodology and datasets to the Soyanggang Dam basin. It has not only similar shape factor and compactness ratio to those of the target basin but also accurate, adequate, and abundant measurements. The results showed that the flood discharge from Typhoon Lionrock corresponded to three to five years design floods in the Duman River basin. This indicate that the Duman River basin has a high risk of flood in the near future. Finally this study demonstrated that remotely sensed data and geographic information could be utilized to simulate flood discharge in an ungauged watershed.

The Estimation and Analysis of Areal Reduction Factor Applying Hydrologic Characteristics in Urban Basin of Jeju Island (수문학적 특성을 적용한 제주 도심지유역의 ARF 산정 및 분석)

  • Kang, Myung-Su;Yang, Sung-Kee;Lee, Jun-Ho;Yang, Se-Chang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.432-432
    • /
    • 2017
  • 국내에서 설계홍수량 산정시, 실무 적용성이 높은 설계강우-유출 모형을 채택하고 유출모형으로는 단위도 방법을 적용하여 설계홍수량을 산정한다. 설계홍수량을 산정함에 있어 설계강우-유출관계 모형을 적용하기 위한 필수요소로 확률강우량 산정이 선행되어야 한다. 확률강우량은 유역면적이 25.9 m를 초과할 경우 면적평균확률강우량을 사용하여야하나 지점평균확률강우량을 주로 사용하고 있다. 이는 해당 유역 강우의 공간적 분포를 고려하고 있지 않기 때문에 각 강우관측소에서 관측되는 지점 강우자료를 면적평균확률강우량으로 산정하는데 매번 복잡한 자료처리과정을 거쳐야 하는데 있다. 따라서 비교적 산정이 간편한 지점평균확률강우량을 사용하여 면적평균확률강우량으로 손쉽게 전환할 수 있는 각 유역별 ARF(Areal Reduction Factor) 의 필요성이 대두된다.(이등, 정등 2002) 본 연구에서는 일반적으로 유역의 강우 빈도해석시 이용되는 면적고정형 방법을 사용하여 표본면적에 대하여, 설계홍수량 산정요령(국토부, 2012)에 제시 된 4대강 유역의 ARF와 제주도 한천유역의 수문학적 특성을 반영한 ARF를 산정하여 비교 하였다. 표본면적($100km^2$)에 대하여 기존 4대강 유역의 ARF와 본 연구에서 산정된 ARF 비교 결과 권역별, 빈도별, 지속시간에 따른 ARF는 제주 도심지 유역 기준 최대 18.63%(영산강유역) 작게 산정되었음을 확인하였다. 이러한 결과는 향후 해당유역의 수문학적 특성 미반영으로 인해 설계홍수량이 과다 및 과소 산정되어 안정적인 수공구조물 결정을 저해하는 중요 요소로 작용 될 수 있어 제주도 전 유역에 적용 가능한 ARF 산정 및 기준 설정 등의 조치가 요구된다.

  • PDF

Estimation of the Hapcheon Dam Inflow Using HSPF Model (HSPF 모형을 이용한 합천댐 유입량 추정)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.69-77
    • /
    • 2019
  • The objective of this study was to calibrate and validate the HSPF (Hydrological Simulation Program-Fortran) model for estimating the runoff of the Hapcheon dam watershed. Spatial data, such as watershed, stream, land use, and a digital elevation map, were used as input data for the HSPF model. Observed runoff data from 2000 to 2016 in study watershed were used for calibration and validation. Hydrologic parameters for runoff calibration were selected based on the user's manual and references, and trial and error method was used for parameter calibration. The $R^2$, RMSE (root-mean-square error), RMAE (relative mean absolute error), and NSE (Nash-Sutcliffe efficiency coefficient) were used to evaluate the model's performance. Calibration and validation results showed that annual mean runoff was within ${\pm}4%$ error. The model performance criteria for calibration and validation showed that $R^2$ was in the rang of 0.78 to 0.83, RMSE was 2.55 to 2.76 mm/day, RMAE was 0.46 to 0.48 mm/day, and NSE was 0.81 to 0.82 for daily runoff. The amount of inflow to Hapcheon Dam was calculated from the calibrated HSPF model and the result was compared with observed inflow, which was -0.9% error. As a result of analyzing the relation between inflow and storage capacity, it was found that as the inflow increases, the storage increases, and when the inflow decreases, the storage also decreases. As a result of correlation between inflow and storage, $R^2$ of the measured inflow and storage was 0.67, and the simulated inflow and storage was 0.61.

Estimation of CN-based Infiltration and Baseflow for Effective Watershed Management (효과적인 유역관리를 위한 CN기법 기반의 침투량 산정 및 기저유출량 분석)

  • Kim, Heewon;Sin, Yeonju;Choi, Jungheon;Kang, Hyunwoo;Ryu, Jichul;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.405-412
    • /
    • 2011
  • Increased Non-permeable areas which have resulted from civilization reduce the volume of groundwater infiltration that is one of the important factors causing water shortage during a dry season. Thus, seeking the efficient method to analyze the volume of groundwater in accurate should be needed to solve water shortage problems. In this study, two different watersheds were selected and precipitation, soil group, and land use were surveyed in a particular year in order to figure out the accuracy of estimated infiltration recharge ratio compared to Web-based Hydrograph Analysis Tool (WHAT). The volume of groundwater was estimated considering Antecedent soil Moisture Condition (AMC) and Curve Number (CN) using Long Term Hydrologic Impact Assessment (L-THIA) model. The results of this study showed that in the case of Kyoung-an watershed, the volume of both infiltration and baseflow seperated from WHAT was 46.99% in 2006 and 33.68% in 2007 each and in Do-am watershed the volume of both infiltration and baseflow was 33.48% in 2004 and 23.65% in 2005 respectively. L-THIA requires only simple data (i.e., land uses, soils, and precipitation) to simulate the accurate volume of groundwater. Therefore, with convenient way of L-THIA, researchers can manage watershed more effectively than doing it with other models. L-THIA has limitations that it neglects the contributions of snowfall to precipitation. So, to estimate more accurate assessment of the long term hydrological impacts including groundwater with L-THIA, further researches about snowfall data in winter should be considered.

A study on the estimation of hydrologic function for ecological restoration at forested wetland (산지습지의 생태적 복원을 위한 수문학적 기능 평가에 관한 연구)

  • Jung, Yu-Gyeong;Kang, Won-Seok;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.97-111
    • /
    • 2022
  • This study was conducted as restoration work to improve the discharge in forested wetlands where there is a concern of damage and observed changes in the discharge and groundwater level. The monthly changes showed that during the wet season, the amount of discharge decreased after restoration and GWL increased. It showed that during the dry season, the GWL and discharge increased. The increased discharge after restoration seems to be the difference in the number of days with no rainfall duration. The change in discharge for each unit of rainfall showed a tendency to increase the baseflow and decrease the direct discharge after restoration. The recharge ratio of GWL showed a decreasing tendency as rainfall was higher. After restoration, it showed a higher tendency under rainfall with less than 20mm. It has been confirmed that the restoration implemented by the study caused such an effect as the increased baseflow and increased GWL. It would be an effective restoration method to maintain water resources in forested wetlands. In the initial rainfall, it demonstrated a certain level of effect, but it is necessary to develop a restoration technology that can decrease the amount of water discharged after the end of rainfall or during the period of no rainfall to protect and maintain the forested wetlands. Streamflow should be identified by each type of terrain of wetlands and a proper restoration countermeasure should be devised for the site where the discharge frequently occurs.