• Title/Summary/Keyword: Hydrologic Topographical Data

Search Result 21, Processing Time 0.031 seconds

Web-based GIS for Real Time Hydrologic Topographical Data Extraction for the Geum River Watershed in Korea (Web기반 GIS를 이용한 금강유역의 실시간 수문지형인자 추출)

  • Nam, Won-Ho;Choi, Jin-Yong;Jang, Min-Won;Engel, B.A.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.81-90
    • /
    • 2007
  • Watershed topographical information is required in hydrologic analysis, supporting efficient hydrologic model operation and managing water resources. Watershed topographical data extraction systems based on desktop GIS are abundant these days placing burdens for spatial data processing on users. This paper describes development of a Web-based Geographic Information Systems that can delineate the Geum River sub-basins and extract watershed topographical data in real time. Through this system, users can obtain a watershed boundary by selecting outlet location and then extracting topographical data including watershed area, boundary length, average altitude, slope distribution about the elevation range with Web browsers. Moreover, the system provides watershed hydrological data including land use, soil types, soil drainage conditions, and NRCS(Natural Resources Conservation Service) curve number for hydrologic model operation through grid overlay technique. The system operability was evaluated with the hydrological data of WAMIS(Water Management Information System) with the government operation Web site as reference data.

Construction of the Curve Number Estimation System Using Geographic Information System (GIS를 이용한 CN 산정시스템 구축)

  • Chae, Jong Hun.;Jeong, In Ju;Kim, Sang Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1262-1266
    • /
    • 2004
  • The current combining of computer and geographic information technology. The result of such research oil determinate objective factors of hydrologic-topographical parameters through joining hydrology and GIS(Geographic Information System). In this study, we wish to offer the base data to determinate hydrologic-topographical parameters request of runoff model analysis in this basin. First, we computed the CN(curve number) by using GIS, and then classify the digital map of soil group and landuse on the Sulma river basin. Second, we used Avenue Script to calculate the height of efficient GIS work before using the Clark model to work out flood runoff flow.

  • PDF

Effect of watershed characteristics on the criteria of Flash Flood warning (유역인자의 특성이 경계경보발령 기준에 미치는 영향분석)

  • 양인태;김재철;김태환
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.389-392
    • /
    • 2004
  • A recent unusual change in the weather is formed as a localized heavy rain in a short time. This phenomenon has caused a flash flood, and flash floods extensively have damaged human lives many times. In large river's case, the extent of loss of lives and properties has been decreased through the flood warning system by flood control stations of each stream. However, the extent of damage in other small rivers has increased reversely. Therefore, it is necessary to establish a new flood warning system against flash floods instead of the existing flood warning system. It is a specific character that the damage from flash floods in mountain streams brings much more loss of lives than large river's flood. The purpose of this study is calculating the characteristic of flash floods in streams, analyzing topographical characteristics of water basin through applying GIS techniques with the calculation as mentioned above and researching what topographical conditions have influence on hydrological flash floods in water basin. The flash flood prediction model we used is made by GIUH (geomorphoclimatic instantaneous unit hydrograph) with hydrologic-topographical technology. As applying the flash flood prediction model, this is a procedure for calculating topographical information in basin: we made a topological data up out of database with utilizing GIS, and we also produced a DEM (digital elevation model) and used it as a topographical data for determining amount of flash floods.

  • PDF

A Study on the Computation of Curve Number Using GIS (GIS를 이용한 CN 산정에 관한 연구)

  • Cho, Yong-Jae;Park, Sang-Ju;Jeong, In-Ju;Kim, Sang-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.3 s.26
    • /
    • pp.47-53
    • /
    • 2003
  • Recently, there is studying about slope analysis according to cell size and affect in conformity to determination of hydrologic topographical parameters the cell size a classified map scale about subwatershed. In this study, we wish to offer the base data to determination of hydrologic topographical parameters request of runoff model analysis in this basin on the basis of this results that we compute the CN(curve number) using GIS after classify the map of soil and landuse on the Su-Young River basin. Also, as determination a classified cell size of $100m{\times}100m$ in case of the most optimum size.

  • PDF

Runoff Estimation Considering Dividing Watershed (유역 분할을 고려한 유출량 산정)

  • Lee, Jong-Hyeong;Yoon, Seok-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.57-66
    • /
    • 2007
  • The purpose of this study is both the variation of hydrologic topographical informations extracted by using WMS and the quantitative effect of rainfalll-runoff simulation due to dividing watershed. Miho stream basin in Geum river was selected by this study. Watershed dividing method are determined by area, channel slope and channel length. Hydrological response of divided watershed using Clark method, SCS method and Snyder method was compared with actual measured flood hydrograph. As a results, area-based watershed dividing method are particularly suitable the hydrologic applications using SCS method. This study can be used as basic data for the phase of the runoff variation in Miho stream basin.

A Study on the Application of Flood Disaster Management Using GIS

  • Jeong, In Ju;Kim, Sang Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.111-123
    • /
    • 2004
  • Recently, though damage caused by intensive rainfall and typhoon happens frequently, we could not forecast or predict a disaster, due to the difficulty of obtaining exact information about it. For efficient disaster management, the most urgent need is the preparation of a flood forecast-warning system. Therefore, we need to provide a program that has the ability of inundation analysis and flood forecast-warning using a geographic information system, and using domestic technology rather than that from foreign countries. In this research, we constructed a FDMS(Flood Disaster Management System) that is able to analyze real-time inundation data, and usins the GIS(Ceographic Information System) with prompt analyzing of hydrologic-topographical parameters and runoff-computation. Moreover, by expressing inundation analysis in three-dimensions, we were able to get to the inundation area with ease. Finally, we expect that the application of this method in the (food forecast-warning system will have great role in reducing casualties and damage.

  • PDF

Management Information System of the Nanji Islands National Marine Reserve, China

  • Qingmei, XIAO;Huaguo, ZHANG;Changbao, ZHOU;Weigen, HUANG;Dongling, LI;Junhua, Ten
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.298-300
    • /
    • 2003
  • A management information system of the Nanji Islands National Marine Reserve is designed and constructed based on method of integration of remote sensing and geographic information system (GIS). The system consists of two sub-systems, dynamic monitoring information system and general database system. The former is used for storage and manage fundamental geographical data (topographical and bathymetric map), satellite remote sensing data (IKONOS, SPOT, IRS, NOAA and SeaWiFS etc.) and multimedia data. The latter is used for storage and manage resource data (shellfish and alga etc.), environmental data (meteorological and hydrologic) and in situ data. As part of electronic government, this system will be submitted to local government for monitoring, management and decision.

  • PDF

Analysis of Geomorphological Characteristics of Bukhan River Basin based on Hydrologic Unit Map (수자원 단위지도를 기반으로 한 북한강 유역의 지형학적 특성 분석)

  • Park, Geun-Ae;Kwon, Hyung-Joong;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.241-251
    • /
    • 2006
  • This study analyzed the topographical characteristics by extracting property factors of stream (stream order, number of stream, stream length, mean stream length) and property factors of basin (basin area, basin length, total stream length, total number of stream, basin mean width, form factor, maximum stream order, basin density, stream frequency, relief ratio, mean elevation, mean, slope, maximum elevation) from DEM (digital elevation model) and stream network generated by 1:5,000 NGIS (national geographical information system) data for the Bukhan-river basin. In addition, topographical factors for upper, mid stream and lower stream were analyzed and the mutuality of the factors by linear and nonlinear regression curve was identified.

Analysis of SWAT Simulated Errors with the Use of MOE Land Cover Data (환경부 토지피복도 사용여부에 따른 예측 SWAT 오류 평가)

  • Heo, Sung-Gu;Kim, Nam-Won;Yoo, Dong-Sun;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.194-198
    • /
    • 2008
  • Significant soil erosion and water quality degradation issues are occurring at highland agricultural areas of Kangwon province because of agronomic and topographical specialities of the region. Thus spatial and temporal modeling techniques are often utilized to analyze soil erosion and sediment behaviors at watershed scale. The Soil and Water Assessment Tool (SWAT) model is one of the watershed scale models that have been widely used for these ends in Korea. In most cases, the SWAT users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. Spatial and temporal resolutions of the MOE land cover data are not good enough to reflect field condition for accurate assesment of soil erosion and sediment behaviors. Especially accelerated soil erosion is occurring from agricultural fields, which is sometimes not possible to identify with low-resolution MOD land cover data. Thus new land cover data is prepared with cadastral map and high spatial resolution images of the Doam-dam watershed. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. These EI values were greater than those with MOE land cover data. With newly prepared land cover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2 (165.9 ton/ha/year with the MOE land cover data and 25.6 ton/ha/year with new land cover data developed in this study). The results obtained in this study implies that the use of MOE land cover data in SWAT sediment simulation for the Doam-dam watershed could results in 70.7% differences in overall sediment estimation and incorrect identification of sediment hot spot areas (such as subwatershed #2) for effective sediment management. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

  • PDF

Impacts assessment of Climate change on hydrologic cycle changes in North Korea based on RCP climate change scenarios I. Development of Long-Term Runoff Model Parameter Estimation for Ungauged Basins (RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 I. 미계측유역의 장기유출모형 매개변수 추정식 개발)

  • Jeung, Se Jin;Kang, Dong Ho;Kim, Byung Sik
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.28-38
    • /
    • 2019
  • Climate change on the Korean peninsula is progressing faster than the global average. For example, typhoons, extreme rainfall, heavy snow, cold, and heatwave that are occurring frequently. North Korea is particularly vulnerable to climate change-related natural disasters such as flooding and flooding due to long-term food shortages, energy shortages, and reckless deforestation and development. In addition, North Korea is classified as an unmeasured area due to political and social influences, making it difficult to obtain sufficient hydrologic data for hydrological analysis. Also, as interest in climate change has increased, studies on climate change have been actively conducted on the Korean Peninsula in various repair facilities and disaster countermeasures, but there are no cases of research on North Korea. Therefore, this study selects watershed characteristic variables that are easy to acquire in order to apply localization model to North Korea where it is difficult to obtain observed hydrologic data and estimates parameters based on meteorological and topographical characteristics of 16 dam basins in South Korea. Was calculated. In addition, as a result of reviewing the applicability of the parameter estimation equations calculated for the fifty thousand, Gangneungnamdaecheon, Namgang dam, and Yeonggang basins, the applicability of the parameter estimation equations to North Korea was very high.