• Title/Summary/Keyword: Hydrologic Response Unit

Search Result 36, Processing Time 0.028 seconds

Evaluation of groundwater recharge rate for land uses at Mandae stream watershed using SWAT HRU Mapping module (SWAT HRU Mapping module을 이용한 해안면 만대천 유역의 토지이용별 지하수 함양량 평가)

  • Ryu, Jichul;Choi, Jae Wan;Kang, Hyunwoo;Kum, Donghyuk;Shin, Dong Suk;Lee, Ki Hwan;Jeong, Gyo-Cheol;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.743-753
    • /
    • 2012
  • The hydrologic models, capable of simulating groundwater recharge for long-term period and effects on it of crops management in the agricultural areas, have been used to compute groundwater recharge in the agricultural fields. Among these models, the Soil and Water Assessment Tool (SWAT) has been widely used because it could interpret hydrologic conditions for the long time considering effects of weather condition, land uses, and soil. However the SWAT model couldn't represent the spatial information of Hydrologic Response Unit (HRU), the SWAT HRU mapping module was developed in 2010. With this capability, it is possible to assume and analyze spatio-temporal groundwater recharge. In this study, groundwater recharge of rate for various crops in the Mandae stream watershed was estimated using SWAT HRU Mapping module, which can simulate spato-temporal recharge rate. As a result of this study, Coefficient of determination ($R^2$) and Nash-Sutcliffe model efficiency (NSE) for flow calibration were 0.80 and 0.72, respectively, and monthly groundwater recharge of Mandae watershed in Haean-myeon was 381.24 mm/year. It was 28% of total precipitation in 2009. Groundwater recharge rate was 73.54 mm/month and 73.58 mm/month for July and August 2009, which is approximately 18 times of groundwater recharge rate for December 2009. The groundwater recharges for each month through the year were varying. The groundwater recharge was smaller in the spring and winter seasons, relatively. So, it is necessary to enforce proper management of groundwater recharge during droughty season. Also, the SWAT HRU Mapping module could show the result of groundwater recharge as a GIS map and analyze spatio-temporal groundwater recharge. So, this method, proposed in this study, would be quite useful to make groundwater management plans at agriculture-dominant watershed.

A Study on Improvement of Hydrologic Cycle by Selection of LID Technology Application Area -in Oncheon Stream Basin- (LID 기술 적용 지역 선정에 따른 물순환 개선 연구 -온천천 유역을 대상으로-)

  • Kim, Jae-Moon;Baek, Jong-Seok;Shin, Hyun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.545-553
    • /
    • 2021
  • The frequency by water disaster in urban areas are increasing continuously due to climate change and urbanization. Countermeasures are being conducted to reduce the damage caused by water disasters. An analysis based on permeability, one of the parameters that affect runoff, is needed to predict quantitative runoff in urban watersheds and study runoff reduction. In this study, the SWAT model was simulated for the oncheon stream basin, a representative urban stream in Busan. The permeability map was prepared by calculating the CN values for each hydrologic response unit. Based on the permeability map prepared, EPA SWMM analyzed the effect of LID technology application on the water cycle in the basin for short-term rainfall events. The LID element technology applied to the oncheon stream basin was rooftop greening in the residential complex, and waterproof packaging was installed on the road. The land cover status of the land selected based on the permeability map and the application of LID technology reduced the outflow rate, peak flow rate, and outflow rate and increased the infiltration. Hence, LID technology has a positive effect on the water cycle in an urban basin.

Suggestion of Synthetic Unit Hydrograph Method Considering Hydrodynamic Characteristic on the Basin (유역의 동수역학적 특성을 고려한 합성단위도 기법의 제시)

  • Kim, Joo Cheol;Choi, Yong Joon;Jeong, Dong Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.47-55
    • /
    • 2011
  • This study suggests new synthetic unit hydrograph method considering hydrodynamic characteristic on the basin. The suggested method based on width function GIUH, and the procedure is summarized as follows; 1) Draw up a travel distance distribution map (width function) which is raster of length between from center of individual cells to the outlet by GIS. 2) Calculation of travel time distribution map (rescaled width function) by hydrodynamic parameters and travel distance distribution map. 3) Derivation of IUH and Duration UH from rescaled width function. 4) Comparison of shape of UH between suggested method and existing synthetic unit hydrograph methods. The target basins are selected Ipyeong and Tanbu subwatershed in the Bocheong Basin. The target basins are similar scale (watershed area), but different drainage structure (drainage density et al.). Therefore we anticipate that there are different hydrologic response functions because different hydrodynamic characteristics. As a result of derivation of UH, existing synthetic unit hydrograph methods are similar shape of UHs about Ipyeong and Tanbu watersheds, but the suggested method is different shape of ones. As a result of application to observed data, the peak discharge by suggested method is similar to existing synthetic unit hydrograph methods, but the peak time is well correspondence between those. Henceforth, if the suggested method combines with the rational velocity estimation method, it is useful method for synthetic of UH in ungauged watershed.

Estimation of SCS Runoff Curve Number and Hydrograph by Using Highly Detailed Soil Map(1:5,000) in a Small Watershed, Sosu-myeon, Goesan-gun (SCS-CN 산정을 위한 수치세부정밀토양도 활용과 괴산군 소수면 소유역의 물 유출량 평가)

  • Hong, Suk-Young;Jung, Kang-Ho;Choi, Chol-Uong;Jang, Min-Won;Kim, Yi-Hyun;Sonn, Yeon-Kyu;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.363-373
    • /
    • 2010
  • "Curve number" (CN) indicates the runoff potential of an area. The US Soil Conservation Service (SCS)'s CN method is a simple, widely used, and efficient method for estimating the runoff from a rainfall event in a particular area, especially in ungauged basins. The use of soil maps requested from end-users was dominant up to about 80% of total use for estimating CN based rainfall-runoff. This study introduce the use of soil maps with respect to hydrologic and watershed management focused on hydrologic soil group and a case study resulted in assessing effective rainfall and runoff hydrograph based on SCS-CN method in a small watershed. The ratio of distribution areas for hydrologic soil group based on detailed soil map (1:25,000) of Korea were 42.2% (A), 29.4% (B), 18.5% (C), and 9.9% (D) for HSG 1995, and 35.1% (A), 15.7% (B), 5.5% (C), and 43.7% (D) for HSG 2006, respectively. The ratio of D group in HSG 2006 accounted for 43.7% of the total and 34.1% reclassified from A, B, and C groups of HSG 1995. Similarity between HSG 1995 and 2006 was about 55%. Our study area was located in Sosu-myeon, Goesan-gun including an approx. 44 $km^2$-catchment, Chungchungbuk-do. We used a digital elevation model (DEM) to delineate the catchments. The soils were classified into 4 hydrologic soil groups on the basis of measured infiltration rate and a model of the representative soils of the study area reported by Jung et al. 2006. Digital soil maps (1:5,000) were used for classifying hydrologic soil groups on the basis of soil series unit. Using high resolution satellite images, we delineated the boundary of each field or other parcel on computer screen, then surveyed the land use and cover in each. We calculated CN for each and used those data and a land use and cover map and a hydrologic soil map to estimate runoff. CN values, which are ranged from 0 (no runoff) to 100 (all precipitation runs off), of the catchment were 73 by HSG 1995 and 79 by HSG 2006, respectively. Each runoff response, peak runoff and time-to-peak, was examined using the SCS triangular synthetic unit hydrograph, and the results of HSG 2006 showed better agreement with the field observed data than those with use of HSG 1995.

Evaluation of Effects on SWAT Simulated Hydrology and Sediment Behaviors of SWAT Watershed Delineation using SWAT ArcView GIS Extension Patch (SWAT ArcView GIS Extension Patch를 이용한 소유역 분할에 따른 수문 및 유사 거동에 미치는 영향 평가)

  • Heo, Sunggu;Kim, Namwon;Park, Younshik;Kim, Jonggun;Kim, Seong-joon;Ahn, Jaehun;Kim, Ki-sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • Because of increased nonpoint source runoff potential at highland agricultural fields of Kangwon province, effective agricultural management practices are required to reduce the inflow of sediment and other nonpoint source pollutants into the water bodies. The watershed-scale model, Soil and Water Assessment Tool (SWAT), model has been used worldwide for developing effective watershed management. However, the SWAT model simulated sediment values are significantly affected by the number of subwatershed delineated. This result indicates that the SWAT estimated watershed characteristics from the watershed delineation process affects the soil erosion and sediment behaviors. However, most SWAT users do not spend time and efforts to analyze variations in sediment estimation due to watershed delineation with various threshold value although topography falsification affecting soil erosion process can be caused with watershed delineation processes. The SWAT model estimates the field slope length of Hydrologic Response Unit (HRU) based on average slope of subwatershed within the watershed. Thus the SWAT ArcView GIS Patch, developed by using the regression relationship between average watershed slope and field slope length, was utilized in this study to compare the simulated sediment from various watershed delineation scenarios. Four watershed delineation scenarios were made with various threshold values (700 ha, 300 ha, 100 ha, and 75 ha) and the SWAT estimated flow and sediment values were compared with and without applying the SWAT ArcView GIS Patch. With the SWAT ArcView GIS Patch applied, the simulated flow values are almost same irrespective of the number of subwatershed delineated while the simulated flow values changes to some extent without the SWAT ArcView GIS Patch applied. However when the SWAT ArcView GIS Patch applied, the simulated sediment values vary 9.7% to 29.8% with four watershed delineation scenarios, while the simulated sediment values vary 0.5% to 126.6% without SWAT ArcView GIS applied. As shown, the SWAT estimated flow and sediment values are not affected by the number of watershed delineation significant compared with the estimated flow and sediment value without applying the SWAT ArcView GIS Patch.

Development of a GIUH Model Based on River Fractal Characteristics (하천의 프랙탈 특성을 고려한 지형학적 순간단위도 개발(I))

  • Hong, Il-Pyo;Go, Jae-Ung
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.565-577
    • /
    • 1999
  • The geometric patterns of a stream network in a drainage basin can be viewed as a "fractal" with fractal dimensions. Fractals provide a mathematical framework for treatment of irregular, ostensively complex shapes that show similar patterns or geometric characteristics over a range of scale. GIUH (Geomorphological Instantaneous Unit Hydrograph) is based on the hydrologic response of surface runoff in a catchment basin. This model incorporates geomorphologic parameters of a basin using Horton's order ratios. For an ordered drainage system, the fractal dimensions can be derived from Horton's laws of stream numbers, stream lengths and stream areas. In this paper, a fractal approach, which is leading to representation of a 2-parameter Gamma distribution type GIUH, has been carried out to incorporate the self similarity of the channel networks based on the high correlations between the Horton's order ratios. The shape and scale parameter of the GIUH-Nash model of IUH in terms of Horton's order ratios of a catchment proposed by Rosso(l984J are simplified by applying the fractal dimension of main stream length and channel network of a river basin. basin.

  • PDF

Spatial and Temporal Variations in the Water Use Efficiency and its Drought Signal on the Korean Peninsula using MODIS-derived Products (MODIS 영상을 활용한 한반도의 시공간적 물 이용효율 변동 및 가뭄과의 연관성 분석)

  • Kim, Jeongbin;Ho, Hyunjoo;Um, Myoung-Jin;Kim, Yeonjoo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.553-564
    • /
    • 2018
  • Water use efficiency (WUE) is the amount of carbon uptake per unit of water use, which is a key measure of the functions of terrestrial ecosystems, as it is related to both the hydrologic and carbon cycles. Furthermore, it can vary with many factors, such as climate conditions and land cover characteristics, in different regions. In this study, we aim to understand the spatial and temporal variations in WUE on the Korean Peninsula as well as the associated response to drought. The Moderate Resolution Imaging Spectroradiometer (MODIS)-derived gross primary productivity (GPP) and evapotranspiration (ET) datasets and climate data were used to derive a drought index. Based on the monthly WUE, we found that WUE decreased during the monsoon summer in all regions and for all vegetation types. Furthermore, the annual WUE was negatively correlated with the drought index, with increasing correlation coefficients from the northern region to the southern region of the Korean Peninsula.

Simulation of Soil Erosion and Sediment Behaviors with Measured Field Slope Length and Slope in Hae-an Watershed using SWAT (해안면 유역의 실측 경사장과 경사도를 이용한 SWAT 토양유실량과 유사량 모의 평가)

  • Yoo, Dong-Sun;Heo, Sung-Gu;Jun, Man-Sig;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1082-1086
    • /
    • 2008
  • 소양강댐 유역에서 몇 년간 계속되는 고탁수 문제가 좀처럼 개선되고 있지 않는 실정이다. 탁수발생의 원인은 여러 가지가 있지만 농경지를 중심으로 유입되는 토양유실이 가장 직접적인 원인으로 지적되고 있다. 특히, 고랭지 농경지에서 소득 작물에 대한 연작피해 경감, 작물의 생산성 향상과 농민들의 소득 증대와 연관되어 무분별하게 농경지에 행해진 객토와 농약 및 비료는 수질 악화의 매우 큰 영향을 미치고 있다. 이러한 문제로 인하여, 토양유실량 추정을 위한 여러 모형들이 개발되었다. 이 중, SWAT 모형은 미국 농무성의 농업연구소에서 개발된 유역단위 모형으로 대규모의 복잡한 유역에서 장기간에 걸친 다양한 종류의 토양과 토지이용 및 토지관리 상태에 따른 수문과 유사 및 농업화학물질의 거동에 대하여 예측하기 위해 개발된 모형이다. 이 SWAT모형은 유역내 수문 및 유사 모의시, DEM을 기반으로 유역 평균경사도를 이용하여 경사도-경사장 관계식 산정 경사장을 유역내 모든 수문학적 반응단위 (HRU: Hydrologic Response Unit)의 동일하게 적용한다. 이는 SWAT 모의 유사량과 실측 자료에 있어서 큰 차이를 초래할 수 있다. 따라서 본 연구에서는 해안면 지역의 모든 농경지에 대해 강원발전연구원에서 전수 조사한 실측 경사장 및 경사도 자료를 반영할 수 있도록 소유역내 모든 HRU에 면적 가중 경사도/경사장을 할당해 주는 프로그램을 개발하여 준분포 모형인 SWAT의 단점을 극복하였다. 그 결과 유출량의 경우 면적 가중 실측경사장 및 경사도를 적용 유무에 따라 월 평균유량 3,951,537 m3/month, 3,953,947 m3/month로 2,410 m3/month의 큰 차이를 보이지 않았지만, 유사량의 경우 면적 가중 실측경사장 및 경사도 적용 하였을 경우 10,826 ton/month 이고, 기존 SWAT 예측 유사량은 월평균 3,642 ton/month으로 7,184 ton/month (66.4 % 차이) 큰 차이를 보였다. 이러한 결과는 SWAT 모형 적용시 경사장 및 경사도 산정에 따라, 유사량이 과소 또는 과대 평가 될 수 있음을 보여준다.

  • PDF

Effects of Subwatershed Delineation on SWAT Estimation (소유역구분이 SWAT 예측치에 미치는 영향 평가)

  • Heo, Seong-Gu;Kim, Gi-Seong;An, Jae-Hun;Im, Gyeong-Jae;Choe, Jung-Dae
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.262-273
    • /
    • 2006
  • The Soil and Water Assessment Tool (SWAT) model has been widely used in hydrology and sediment simulation worldwide. In most cases, the SWAT model is first calibrated with adjustments in model parameters, and then the validation is performed. However, very little study regarding the effects on SWAT estimation of subwatershed delineation was performed. Thus, the SWAT model was applied to the Doam-dam watershed with various threshold values in subwatershed delineation in this study to examine the effects on the number of subwatershed delineated on SWAT estimation. It was found the flow effect of subwatershed delineation is negligible. However there were huge variations in SWAT estimated sediment, T-N, and T-P values with the use of various threshold value in watershed delineation. Sometimes these variations due to watershed delineation are beyond the effects of parameter adjustment in model calibration and validation. The SWAT is a semi-distributed modeling system, thus, the subwatershed characteristics are assumed to be the same for all Hydrologic Response Unit (HRU) within that subwatershed. This assumption leads to variations in the SWAT estimated sediment and nutrient output values. Therefore, it is strongly recommended the SWAT users need to use the HUR specific slope length and slope value in model runs, instead of using the slope and the corresponding slope length of the subawatershed to exclude the effects of the number of subwatershed delineated on the SWAT estimation.

  • PDF

Long-term runoff characteristics on HRU variations of PRMS (PRMS의 HRU크기에 따른 장기유출특성)

  • Kim, Nam-Won;Kim, Hyeon-Jun;Park, Sun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.167-177
    • /
    • 2005
  • In this study, the PRMS(Precipitation and Runoff Modeling System), developed by USGS(United States Geological Survey), was applied to the Yongdam dam watershed in the Geum River basin. The efficiency for runoff simulation and spatial characteristics of PRMS were evaluated. The runoff changes with the changes of subcatchments and HRUs were estimated. As results, the size of the subcatchment and HRV did not significantly affect the runoff at the exit of watershed. Consequently, the spatial characteristic of PRMS was shown as lumped type rather than semi-distributed. The geographical input data for Yongdam dam watershed were converted to the USGS Input type, and the parameters were calibrated using Rosenbrock optimization method, validated with the observed runoff data. The PRMS showed resonable agreements in the long-term continuous runoff simulation, if the accuracy of observed data is ensured.