Browse > Article
http://dx.doi.org/10.7780/kjrs.2018.34.3.10

Spatial and Temporal Variations in the Water Use Efficiency and its Drought Signal on the Korean Peninsula using MODIS-derived Products  

Kim, Jeongbin (Department of Civil and Environmental Engineering, Yonsei University)
Ho, Hyunjoo (Department of Civil and Environmental Engineering, Yonsei University)
Um, Myoung-Jin (Department of Civil and Environmental Engineering, Yonsei University)
Kim, Yeonjoo (Department of Civil and Environmental Engineering, Yonsei University)
Publication Information
Korean Journal of Remote Sensing / v.34, no.3, 2018 , pp. 553-564 More about this Journal
Abstract
Water use efficiency (WUE) is the amount of carbon uptake per unit of water use, which is a key measure of the functions of terrestrial ecosystems, as it is related to both the hydrologic and carbon cycles. Furthermore, it can vary with many factors, such as climate conditions and land cover characteristics, in different regions. In this study, we aim to understand the spatial and temporal variations in WUE on the Korean Peninsula as well as the associated response to drought. The Moderate Resolution Imaging Spectroradiometer (MODIS)-derived gross primary productivity (GPP) and evapotranspiration (ET) datasets and climate data were used to derive a drought index. Based on the monthly WUE, we found that WUE decreased during the monsoon summer in all regions and for all vegetation types. Furthermore, the annual WUE was negatively correlated with the drought index, with increasing correlation coefficients from the northern region to the southern region of the Korean Peninsula.
Keywords
Water use efficiency; Land cover; MODIS; Korea; Drought; SPEI;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yu, G.R., X. Song, Q.F. Wang, Y. Liu, D. Guan, J. Yan, X. Sun, L. Zhang, and X. Wen, 2008. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables, New Phytologist, 177(4): 927-937.   DOI
2 Zhao, M., F.A. Heinsch, R.R. Nemani, and S.W. Running, 2005. Improvements of the MODIS terrestrial gross and net primary production global data set, Remote Sensing of Environment, 95(2): 164-176.   DOI
3 Vicente-Serrano, S.M., S. Begueria, and J.I. Lopez-Moreno, 2010. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index, Journal of Climate, 23: 1696-1718.   DOI
4 Korea Meteorological Administration, 2015. Annual Climatological Report 2014, Korea Meteorological Administration, Seoul, Korea.
5 Kuglitsch, F.G., M. Reichstein, C. Beer, A. Carrara, R. Ceulemans, A. Granier, I.A. Janssens, B. Koestner, A. Lindroth, D. Loustau, G. Matteucci, L. Montagnani, E.J. Moors, D. Papale, K. Pilegaard, S. Rambal, C. Rebmann, E.D. Schulze, G. Seufert, H. Verbeeck, T. Vesala, M. Aubinet, C. Bernhofer, T. Foken, T. Grünwald, B. Heinesch, W. Kutsch, T. Laurila, B. Longdoz, F. Miglietta, M.J. Sanz, and R. Valentini, 2008. Characterisation of ecosystem water-use efficiency of European forests from eddy covariance measurements, Biogeosciences Discuss, 5: 4481-4519.   DOI
6 Law, B., E. Falge, L. Gu, D. Baldocchi, P. Bakwin, P. Berbigier, K. Davis, A. Dolman, M. Falk, J. Fuentes, A. Goldstein, A. Granier, A. Grelle, D. Hollinger, I. Janssens, P. Jarvis, N. Jensen, G. Katul, Y. Mahli, G. Metteucci, T. Meyers, R. Monson, W. Munger, W. Oechel, R. Olson, K. Pilegaard, K. Paw, H. Thorgeirsson, R. Valentini, S. Verma, T. Vesala, K. Wilson, and S. Wofsy, 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation, Agriculture and Forest Meteorology, 113(1-4): 97-120.   DOI
7 Keenan, T.F., D.Y. Hollinger, G. Bohrer, D. Dragoni, J.W. Munger, H.P. Schmid, and A.D. Richardson, 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise, Nature, 499: 324-327.   DOI
8 Hogg, E.H., 1994. Climate and the southern limit of the western Canadian boreal forest, Canadian Journal of Forest Research, 24(9): 1835-1845.   DOI
9 Heinsch, F.A., M. Reeves, P. Votava, S. Kang, C. Milesi, J. Glassy, W.M. Jolly, R. Loehman, C.F. Bowker, J.S. Kimball, R. Nemani, and S.W. Running, 2003. User's guide GPP and NPP (MOD17A2/A3) products NASA MODIS land algorithm, University of Montana, Missoula, Montana, U.S.
10 Holdridge, L.R., 1947. Determination of world plant formations from simple climatic data, Science, 105(2727): 367-368.   DOI
11 Hosking, J.R.M., 1990. L-moments: Analysis and Estimation of Distributions using Linear Combinations of Order Statistics, Journal of the Royal Statistical Society: Series B, 52(1): 105-124.   DOI
12 Hu, Z., G. Yu, Y. Fu, X. Sun, Y. Li, P. Shi, Y. Wang, and Z. Zheng, 2008. Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China, Global Change Biology, 14(7): 1609-1619.   DOI
13 Intergovernmental Panel on Climate Change, 2014. Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change, Geneva, Switzerland.
14 Bacon, M.A., 2004. Water use efficiency in plant biology, Wiley-Blackwell, Oxford, U.K.
15 Jiang, C. and C. Ryu, 2016. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS), Remote Sensing of Environment, 186: 528-547.   DOI
16 Joyce, R.J., J.E. Janowiak, P.A. Arkin, and P. Xie, 2004. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution, Journal of Hydrometeorology, 5(3): 487-503.   DOI
17 Gerten, D., Y. Luo, G. Le Maire, W. Parton, C. Keough, E. Weng, C. Beier, P. Cias, W. Cramer, J. Dukes, P. Hanson, A. Knapp, S. Linder, D. Nepstad, L. Rustad, and A. Sowerby, 2008. Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones, Global Change Biology, 14(10): 2365-2379.   DOI
18 Baldocchi, D., 1994. A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop: II. CO2 exchange and water use efficiency, Agricultural and Forest Meteorology, 67(3-4): 291-321.   DOI
19 Baldocchi, D.D. and K.B. Wilson, 2001. Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales, Ecological Modelling, 142(1-2): 155-184.   DOI
20 Beer, C., P. Ciais, M. Reichstein, D. Baldocchi, B. Law, D. Papale, J. Soussana, C. Ammann, N. Buchmann, D. Frank, D. Gianelle, I.A. Janssens, A. Knohl, B. Kostner, E. Moors, O. Roupsard, H. Verbeeck, T. Vesala, C.A. Williams, and G. Wohlfahrt, 2009. Temporal and among-site variability of inherent water use efficiency at the ecosystem level, Global Biogeochemistry Cycles, 23(2).
21 Cleugh, H.A., R. Leuning, Q. Mu, and Running, S.W., 2007. Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sensing of Environment, 106(3): 285-304.   DOI
22 Davi, H., E. Dufrene, C. Francois, G. Le Maire, D. Loustau, A. Bosc, S. Rambal, A. Granier, and E. Moors, 2006. Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems, Agriculture and Forest Meteorology, 141(1): 35-56.   DOI
23 Dong, G., J. Guo, J. Chen, G. Sun, S. Gao, L. Hu, and L. Wang, 2011. Effects of spring drought on carbon sequestration, evapotranspiration and water use efficiency in the Songnen meadow steppe in Northeast China, Ecohydrology, 4(2): 211-224.   DOI
24 McKee, T.B., N.J. Doesken, and J. Kleist, 1993. The Relationship of Drought Frequency and Duration to Time Scales, Proc. of 8th Conference on Applied Climatology, Anaheim, CA, Jan. 17-22, pp. 179-184.
25 An, S.I., K.J. Ha, K.H. Seo, S.W. Yeh, S.K. Min, and C.H. Ho, 2011. A review of recent climate trends and causes over the Korean peninsula, Climate Change Research, 2(4): 237-251.
26 Liang, N. and K. Maruyama, 1995. Interactive effects of CO2 enrichment and drought stress on gas exchange and water-use efficiency in Alnus Firma, Environmental and Experimental Botany, 35(3): 353-361.   DOI
27 Liu, Y., J. Xiao, W. Ju, Y. Zhou, S. Wang, and X. Wu, 2015. Water use efficiency of China's terrestrial ecosystems and responses to drought, Science Report, 5: 13799.   DOI
28 Lu, X.L. and Q.L. Zhuang, 2010. Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data, Remote Sensing of Environment, 114: 1924-1939.   DOI
29 Luo, Y., D. Gerten, G. Le Maire, W. Parton, E. Weng, X. Zhou, C. Keough, C. Beier, P. Cias, W. Cramer, J. Dukes, B. Emmett, P. Hanson, A. Knapp, S. Linder, D. Nepstad, and L. Rustad, 2008. Modeled interactive effects of precipitation, temperature, and CO2 on ecosystem carbon and water dynamics in different climatic zones, Global Change Biology, 14(9): 1986-1999.   DOI
30 Monteith, J.L., 1972. Solar radiation and productivity in tropical ecosystems, Journal of Applied Ecology, 9(3): 747-766.   DOI
31 Mu, Q., F.A. Heinsch, M. Zhao, and S.W. Running, 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sensing of Environment, 111: 519-536.   DOI
32 Niu, S., X. Xing, Z. Zhang, J. Xia, X. Zhou, B. Song, L. Li, and S. Wan, 2011. Water-use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe, Global Change Biology, 17(2): 1073-1082.   DOI
33 Mu, Q., F.A. Heinsch, M. Zhao, and S.W. Running, 2011b. Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sensing of Environment, 115: 1781-1800.   DOI
34 Mu, Q., M. Zhao, J.S. Kimball, N.G. McDowell, and S.W. Running, 2013. A Remotely Sensed Global Terrestrial Drought Severity Index, Bulletin of the American Meteorological Society, 94(1): 83-98.   DOI
35 Niu, S., M. Wu, Y. Han, J. Xia, L. Li, and S. Wan, 2008. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe, New Phytologist, 177(1): 209-219.   DOI
36 Palmer, W., 1965. Meteorological drought, U.S. Department of Commerce Weather Bureau, Washington DC, U.S.
37 Ponce-Campos, G.E., M.S. Moran, A. Huete, Y. Zhang, C. Bresloff, T.E. Huxman, D. Eamus, D.D. Bosch, A.R. Buda, S.A. Gunter, T.H. Scalley, S.G. Kitchen, M.P. McClaran, W.H. McNab, D.S. Montoya, J.A. Morgan, D.P.C. Peters, E.J. Sadler, M.S. Seyfried, and P.J. Starks, 2013. Ecosystem resilience despite largescale altered hydroclimatic conditions, Nature, 494: 349-352.   DOI
38 Reichstein, M., J.D. Tenhunen, O. Roupsard, J.M. Ourcival, S. Rambal, F. Miglietta, A. Peressotti, M. Pecchiari, G. Tirone, and R. Valentini, 2002. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses?, Global Change of Biology, 8(10): 999-1017.   DOI
39 Running, S.W., R.R. Nemani, F.A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto, 2004. A continuous satellite-derived measure of global terrestrial primary production, Bioscience, 54(6): 547-560.   DOI
40 Reichstein, M., P. Ciais, D. Papale, R. Valentini, S. Running, N. Viovy, W. Cramer, A. Granier, J. Ogee, V. Allard, M. Aubinet, C. Bernhofer, N. Buchmann, A. Barrara, T. Grunwald, M. Heimann, B. Heinesch, A. Knohl, W. Kutsch, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J.M. Ourcival, K. Pilegaard, J. Pumpanen, S. Rambal, S. Schaphoff, G. Seufert, J.F. Soussana, M.J. Sanz, T. Vesala, and M. Zhao, 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis, Global Change Biology, 13(3): 634-651.   DOI
41 Running, S.W. and M. Zhao, 2015. User's guide daily GPP and annual NPP (MOD17A2/A3) products NASA Earth observing system MODIS land algorithm, Version 3.0 for collection 6, University of Montana, Missoula, Montana, U.S.
42 Ryu, Y., D.D. Baldocchi, H. Kobayashi, C. Van Ingen, J. Li, T.A. Black, J. Beringer, E.V. Gorsel, A. Knohl, B.E. Law, and O. Roupsard, 2011. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales, Global Biogeochemistry Cycles, 25(4): 1-24.
43 Scanlon, T.M. and J.D. Albertson, 2004. Canopy scale measurements of CO2 and water vapor exchange along a precipitation gradient in southern Africa, Global Change Biology, 10(3): 329-341.   DOI
44 Sharma, B., D. Molden, and S. Cook, 2015. Water use efficiency in agriculture: Measurement, current situation and trends, In: Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D. (Eds.), Managing water and fertilizer for sustainable agricultural intensification, Paris, France, pp. 39-64.
45 Thornthwaite, C., 1948. An Approach toward a Rational Classification of Climate, Geographical Review, 38(1): 55-94.   DOI
46 Sur, C.Y. and M. Choi, 2013. Evaluating ecohydrological impacts of vegetation activities on climatological perspectives using MODIS gross primary productivity and evapotranspiration products at Korean regional flux network site, Remote Sensing, 5(5): 2534-2553.   DOI
47 Tang, X., H. Li, A.R. Desai, Z. Nagy, J. Luo, T.E. Kolb, A. Olioso, X. Xu, L. Yao, W. Kutsch, K. Pilegaard, B. Kostner, and C. Ammann, 2014. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?, Scientific Reports, 4: 7483.
48 Tian, H.Q., C. Lu, G. Chen, X. Xu, M. Liu, W. Ren, B. Tao, G. Sun, S. Pan, and J. Liu, 2011. Climate and land use controls over terrestrial water use efficiency in monsoon Asia, Ecohydrology, 4(2): 322-340.   DOI
49 Wang, J., G. Yu, Q. Fang, D. Jiang, H. Qi, and Q. Wang, 2008. Responses of water use efficiency of 9 plant species to light and CO2 and their modeling, Acta Ecologica Sinica, 28(2): 525-533.   DOI
50 Willmott, C.J. and K. Matsuura, 2001. Terrestrial air temperature and precipitation: Monthly and annual time series (1950-1999) (version 1.02), Center for Climate Research, University of Delaware, Newark, New Jersey, U.S.
51 Woodward, F.I., 1987. Climate and Plant Distribution, Cambridge University Press, Cambridge, U.K.
52 Ye, X.C., Y.L. Li, X.H. Li, C.Y. Xu, and Q. Zhang, 2015. Investigation of the variability and implications of meteorological dry/wet conditions in the Poyang lake catchment, China, during the period 1960-2010, Advances in Meteorology, 2015: 928534.