• 제목/요약/키워드: Hydrologic Modeling

검색결과 175건 처리시간 0.026초

토양수분 저류 기반의 간결한 준분포형 수문분할모형 개발 (Development of Parsimonious Semi-Distributed Hydrologic Partitioning Model Based on Soil Moisture Storages)

  • 최정현;김령은;김상단
    • 한국물환경학회지
    • /
    • 제36권3호
    • /
    • pp.229-244
    • /
    • 2020
  • Hydrologic models, as a useful tool for understanding the hydrologic phenomena in the watershed, have become more complex with the increase of computer performance. The hydrologic model, with complex configurations and powerful performance, facilitates a broader understanding of the effects of climate and soil in hydrologic partitioning. However, the more complex the model is, the more effort and time is required to drive the model, and the more parameters it uses, the less accessible to the user and less applicable to the ungauged watershed. Rather, a parsimonious hydrologic model may be effective in hydrologic modeling of the ungauged watershed. Thus, a semi-distributed hydrologic partitioning model was developed with minimal composition and number of parameters to improve applicability. In this study, the validity and performance of the proposed model were confirmed by applying it to the Namgang Dam, Andong Dam, Hapcheon Dam, and Milyang Dam watersheds among the Nakdong River watersheds. From the results of the application, it was confirmed that despite the simple model structure, the hydrologic partitioning process of the watershed can be modeled relatively well through three vertical layers comprising the surface layer, the soil layer, and the aquifer. Additionally, discussions were conducted on antecedent soil moisture conditions widely applied to stormwater estimation using the soil moisture data simulated by the proposed model.

간편법에 의한 소규모저수지의 수문학적 안전성 평가 (Hydrologic Safety Evaluation of Small Scale Reservoir by Simplified Assesment Method)

  • 이주헌;양승만;김성준;강부식
    • 한국농공학회논문집
    • /
    • 제53권2호
    • /
    • pp.9-17
    • /
    • 2011
  • Based on the statistical annual report, there are 17,649 reservoirs are operating for the purpose of agricultural water supply in Korea. 58 % of entire agricultural reservoirs had been constructed before 1948 which indicate the termination of required service life and rest of those reservoirs have also exposed to the dam break risk by extreme flood event caused by current ongoing climate change. To prevent damages from dam failure accident of these risky small size dams, it is necessary to evaluate and manage the structural and hydrological safety of the reservoirs. In this study, a simplified evaluation method for hydrologic safety of dam is suggested by using Rational and Creager formula. Hydrologic safety of small scale dams has evaluated by calculating flood discharge capacity of the spillway and compares the results with design frequency of each reservoir. Applicability and stability of suggested simplified method have examined and reviewd by comparing the results from rainfall-runoff modeling with dam break simulation using HEC-HMS. Application results of developed methodology for three sample reservoirs show that simplified assessment method tends to calculate greater inflow to the reservoirs then HEC-HMS model which lead lowered hydrologic safety of reservoirs. Based on the results of application, it is expected that the developed methodology can be adapted as useful tool for small scale reservoir's hydrologic safety evaluation.

AnnAGNPS 모형을 이용한 관목림지의 비점오염 모의 (Non-point Source Pollution Modeling Using AnnAGNPS Model for a Bushland Catchment)

  • 최경숙
    • 한국농공학회논문집
    • /
    • 제47권4호
    • /
    • pp.65-74
    • /
    • 2005
  • AnnAGNPS model was applied to a catchment mainly occupied with bushland for modeling non-point source pollution. Since the single event model cannot handle events longer than 24 hours duration, the event-based calibration was carried out using the continuous mode. As event flows affect sediment and nutrient generation and transport, the calibration of the model was performed in three steps: Hydrologic, Sediment and Nutrient calibrations. The results from hydrologic calibration for the catchment indicate a good prediction of the model with average ARE(Absolute Relative Error) of $24.6\%$ fur the runoff volume and $12\%$ for the peak flow. For the sediment calibration, the average ARE was $198.8\%$ indicating acceptable model performance for the sediment prediction. The predicted TN(Total Nitrogen) and TP(Total Phosphorus) were also found to be acceptable as the average ARE for TN and TP were $175.5\%\;and\;126.5\%$, respectively. The AnnAGNPS model was therefore approved to be appropriate to model non-point source pollution in bushland catchments. In general, the model was likely to result in underestimation for the larger events and overestimation fur the smaller events for the water quality predictions. It was also observed that the large errors in the hydrologic prediction also produced high errors in sediment and nutrient prediction. This was probably due to error propagation in which the error in the hydrologic prediction influenced the generation of error in the water quality prediction. Accurate hydrologic calibration should be hence obtained for a reliable water quality prediction.

무유출의 고려를 통한 간헐하천 유역에 확률기반의 격자형 수문모형의 구축 (Accounting for zero flows in probabilistic distributed hydrological modeling for ephemeral catchment)

  • 이동기;안국현
    • 한국수자원학회논문집
    • /
    • 제53권6호
    • /
    • pp.437-450
    • /
    • 2020
  • 본 연구에서는 우리나라의 기후 특성의 영향으로 종종 발생하는 무유출량의 간헐하천 유역(Ephemeral catchment)에 확률기반 격자형 수문 모형을 구축하였다. 격자형 모형의 구축을 위하여 Sacramento Soil Moisture Accounting Model (SAC-SMA) 유출 모형을 사용하였으며 라우팅 모형의 결합으로 격자형 강우-유출 모형을 구축하였다. 확률 모형의 표현을 위하여 에러 모형을 결합시켰으며 간헐하천 유역에 적합하게 표현하기 위해서 검열된 오류 모형(censoring error model)을 사용하였다. 기존에 많이 사용되는 정규화된 오류 모형과의 비교를 통하여 본 연구에서 구축한 모형의 적합성을 평가하였다. 먼저 과거 주된 연구와 유역에 대한 검토를 통하여 그 필요성을 논하였으며 우리나라에서 수문 모형에 많이 사용되는 용담댐을 선정하여 수문 모형을 구축하였다. 결과적으로 본 연구에서 구축한 두개의 모형이 둘 다 신뢰할 만한 결과를 보여주지만 검열된 오류 모형의 사용이 더욱 적합한 결과를 보여주는 것을 확인하였다. 이 과정에서 기존의 방법론은 확률 기반의 유출량의 표현에 있어서 0 이하의 음수값을 상당히 표현하였으며 이는 현실이지 못한 수문 모델링의 표현을 의미한다. 본 연구에서는 또한 두 모형의 심층적인 비교를 위하여 심화된 간헐하천 유역을 구축하고 수문 모델링을 하였다. 결과적으로 무유출의 빈도 증가에 따라 무유출량을 고려하는 검열된 오류 모형의 효율이 증가하는 것을 알 수 있었다. 본 연구에서 얻은 결과는 우리나라의 수문 모델링에 있어서 간헐하천 유역에 대한 고려가 필요하다는 것을 의미한다.

Bilinear 보간법에 의한 임의 하천단면 생성에 관한 연구 (Generating Random Cross-Section of River Channel using Bilinear Interpolation Method)

  • 최내인;조기성
    • 대한공간정보학회지
    • /
    • 제16권3호
    • /
    • pp.105-110
    • /
    • 2008
  • 하천의 수리/수문 모델링에 활용하는 하천 지형자료는 하천정비기본계획을 위한 횡단측량을 통하여 취득된 하천단면 자료를 활용하고 있으나 취득되는 단면간의 거리가 다소 커 모델링 과정 중 보다 조밀한 간격의 단면형상을 필요로 하는 경우에도 단면자료를 취득할 수 없을 뿐만 아니라 관측점간의 직선거리를 고려하는 보간기법들의 특성에 의하여 현실적인 하천의 형상을 반영하지 못하는 문제점이 있다. 본 연구에서는 대표적인 수체부 하천 지형자료라 할 수 있는 하천정비기본계획상의 하천단면자료를 이용하여 하천의 형상을 효율적으로 추정하고자 하였으며 관측된 하천단면자료들 사이의 임의 단면을 생성하는 알고리즘을 제시함으로써 GIS 자료를 이용한 수리/수문 모델링에서 쉽게 활용이 가능하도록 하였다.

  • PDF

An Extended Model Evaluation Method under Uncertainty in Hydrologic Modeling

  • Lee, Giha;Youn, Sangkuk;Kim, Yeonsu
    • 한국지반환경공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.13-25
    • /
    • 2015
  • This paper proposes an extended model evaluation method that considers not only the model performance but also the model structure and parameter uncertainties in hydrologic modeling. A simple reservoir model (SFM) and distributed kinematic wave models (KWMSS1 and KWMSS2 using topography from 250-m, 500-m, and 1-km digital elevation models) were developed and assessed by three evaluative criteria for model performance, model structural stability, and parameter identifiability. All the models provided acceptable performance in terms of a global response, but the simpler SFM and KWMSS1 could not accurately represent the local behaviors of hydrographs. Moreover, SFM and KWMSS1 were structurally unstable; their performance was sensitive to the applied objective functions. On the other hand, the most sophisticated model, KWMSS2, performed well, satisfying both global and local behaviors. KMSS2 also showed good structural stability, reproducing hydrographs regardless of the applied objective functions; however, superior parameter identifiability was not guaranteed. A number of parameter sets could result in indistinguishable hydrographs. This result indicates that while making hydrologic models complex increases its performance accuracy and reduces its structural uncertainty, the model is likely to suffer from parameter uncertainty.

HEC-HMS를 이용한 농업소유역에서의 홍수량 추정 (Estimation of Flood runoff using HEC-HMS at agricultural small watershed)

  • 김상민;박승우
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.281-284
    • /
    • 2002
  • Geographic Information System (GIS) has advantage of analyzing spatial distributed data and handling spatial data for hydrologic analysis. Hydrologic Engineering Center's Hydrologic Modeling System(HEC-HMS) with HEC-GeoHMS was used to analyze flood runoff at agricultural small watershed. HEC-GeoHMS, which is an ArcView GIS extension designed to process geospatial data for HEC-HMS, is a useful tool for storing, managing, analyzing, and displaying spatially distributed data. Hydroligical component including peak discharge, time to peak, direct runoff, baseflow for Balhan study watershed, which is located in Whasung city, Kyunggi province, having an area of $29.79km^2$, were calculated using the HEC-HMS model with HEC-GeoHMS.

  • PDF

관개용 저수지의 일별유입량과 방류량의 모의발생(I)-선형 저수지 모형에 의한 유입량의 추정- (Simulating Daily Inflow and Release Rates for Irrigation Reservoirs (1) -Modeling Inflow Rates by A Linear Reservoir Model-)

  • 김현영;박승우
    • 한국농공학회지
    • /
    • 제30권1호
    • /
    • pp.50-62
    • /
    • 1988
  • This study refers to the development of a hydrologic model simulating daily inflow and release rates for irrigation reservoirs. A daily - based model is needed for adequate operation of an irrigation reservoir sufficing the water demand for paddy fields which is closely related to meteorological conditions. Inflow rates to a reservoir need to be accurately described, which may be simulated using a hydrologic model from daily rainfall data. And the objective of this paper is to develop, test, and apply a hydrologic model for daily runoff simmulation. A well - known tank model was selected and modified to simulate daily inflow rates. The model parameters were calibrated using observed runoff data from twelve watersheds, Relationships between the parameters and the watershed characteristics were derived by a multiple regression analysis. The simulation results were in agreement with the data. The inflow model was found to simulate low flow conditions more accurately than high flow conditions, which may be adequate for water resources utilization.

  • PDF

Assessment of streamflow variation considering long-term land-use change in a watershed

  • Noh, Joonwoo;Kim, Yeonsu;Yu, Wansik;Yu, Jisoo
    • 농업과학연구
    • /
    • 제48권3호
    • /
    • pp.629-642
    • /
    • 2021
  • Land-use change has an important role in the hydrologic characteristics of watersheds because it alters various hydrologic components such as interception, infiltration, and evapotranspiration. For example, rapid urbanization in a watershed reduces infiltration rates and increases peak flow which lead to changes in the hydrologic responses. In this study, a physical hydrologic model the soil and water assessment tool (SWAT) was used to assess long-term continuous daily streamflow corresponding to land-use changes that occurred in the Naesungchun river watershed. For a 30-year model simulation, 3 different land-use maps of the 1990s, 2000s, and 2010s were used to identify the impacts of the land-use changes. Using SWAT-CUP (calibration and uncertainty program), an automated parameter calibration tool, 23 parameters were selected, optimized and compared with the daily streamflow data observed at the upstream, midstream and downstream locations of the watershed. The statistical indexes used for the model calibration and validation show that the model performance is improved at the downstream location of the Naesungchun river. The simulated streamflow in the mainstream considering land-use change increases up to -2 - 30 cm compared with the results simulated with the single land-use map. However, the difference was not significant in the tributaries with or without the impact of land-use change.