• Title/Summary/Keyword: Hydrologic Homogeneity

Search Result 9, Processing Time 0.029 seconds

Hydrologic Disaggregation Model using Neural Networks Technique (신경망기법을 이용한 수문학적 분해모형)

  • Kim, Sung-Won
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.79-97
    • /
    • 2010
  • The purpose of this research is to apply the neural networks models for the hydrologic disaggregation of the yearly pan evaporation(PE) data in Republic of Korea. The neural networks models consist of multilayer perceptron neural networks model(MLP-NNM) and support vector machine neural networks model(SVM-NNM), respectively. And, for the evaluation of the neural networks models, they are composed of training and test performances, respectively. The three types of data such as the historic, the generated, and the mixed data are used for the training performance. The only historic data, however, is used for the testing performance. The application of MLP-NNM and SVM-NNM for the hydrologic disaggregation of nonlinear time series data is evaluated from results of this research. Four kinds of the statistical index for the evaluation are suggested; CC, RMSE, E, and AARE, respectively. Homogeneity test using ANOVA and Mann-Whitney U test, furthermore, is carried out for the observed and calculated monthly PE data. We can construct the credible monthly PE data from the hydrologic disaggregation of the yearly PE data, and the available data for the evaluation of irrigation and drainage networks system can be suggested.

A Study on Estimation of Rainfall Erosivity in RUSLE (RUSLE의 강우침식도 추정에 관한 연구)

  • Lee, Joon-Hak;Jung, Young-Hun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1324-1328
    • /
    • 2008
  • RUSLE(Revised Universal Soil Loss Equation) is one of empirical models for estimating the soil loss effectively, when there is no measured data from the study areas. It has been researching into application and estimation of the RUSLE parameters in Korea. As one of the RUSLE parameters, the rainfall-runoff erosivity factor R, is closely connected hydrologic characteristics of the study areas. It requires a continuous record of rainfall measurement at a minute time step for each storm to calculate an accurate R factor by the RUSLE methodology and it takes a lot of time to analyze it. For the more simplified and reasonable estimation of the rainfall erosivity, this study researched for correlation between the rainfall erosivity and mean annual precipitation used 122 data from the existing studies in Korea. Considering hydrologic homogeneity, new regression equations are presented and compared with other annual erosive empirical index for the test of application. As the results, the study presents the isoerodent map at 59 sites in Korea, using annual rainfall data by the Korea Meteorological Administration from 1978 to 2007.

  • PDF

Statistical Tests for the Flow Change in Sumjin River (섬진강의 유량변화 통계 검정)

  • Lee, Gwang-Man;Yun, La-Young;Lee, Seung-Yoon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.1067-1077
    • /
    • 2008
  • An understanding of temporal trends of stream flows can help in the river management and the water resources planning for natural circumstances and human communities. Changes in temperature, precipitation, flow, and land use (agriculture, flood prevention activities, reservoir operation, interbasin diversion, etc.) are all eventually reflected in the flow pattern of the river. An assumption that the stationarity of the hydrologic series implying time-invariant characteristics of the time series accepted in water structure designs can no longer be valid if the flow changes as a result of the climate change or the stream flow use. Therefore, the identification and description of the characteristics of changes in hydrologic time series is a very important task in the river basin management. In this study, the statistical tests on the flow change forced by excess water diversions in the Sumjin River basin were performed by ways of single variable and time series variable comparisons. The tests showed that currently the Sumjin River basin statistically keeps its homogeneity in annual streamflow series, but the changed situation has been appeared in dry season streamflow series.

Estimates of Regional Flood Frequency in Korea (우리나라의 빈도홍수량의 추정)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1019-1032
    • /
    • 2004
  • Flood frequency estimate is an essential index for determining the scale of small and middle hydraulic structure. However, this flood quantity could not be estimated directly for practical design purpose due to the lack of available flood data, and indirect method like design rainfall-runoff method have been used for the estimation of design flood. To give the good explain for design flood estimates, regional flood frequency analysis was performed by flood index method in this study. First, annual maximum series were constructed by using the collected data which covers from Japanese imperialism period to 1999. Wakeby distribution recommended by WMO(1989) was used for regional flood frequency analysis and L-moment method by Hosking (1990) was used for parameter estimation. For the homogeneity of region, the discordance and heterogeneity test by Hosking and Wallis(1993) was carried for 4 major watersheds in Korea. Physical independent variable correlated with index flood was watershed area. The relationship between specific discharge and watershed area showed a type of power function, i.e. the specific discharge decreases as watershed area increases. So flood quantity according to watershed area and return period was presented for each watershed(Han rivet, Nakdong river, Geum river and Youngsan/Seomjin river) by using this relation type. This result was also compared with the result of point frequency analysis and its regionalization. It was shown that the dam construction couldn't largely affect the variation of peak flood. The property of this study was also examined by comparison with previous studies.

A Derivation of Regional Representative Intensity-Duration-Frequency Relationship Using Multivariate Analysis (다변량 분석을 이용한 권역별 대표확률강우강도식의 유도)

  • Lee, Jung-Sik;Cho, Seong-Geun;Jang, Jin-Uk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.13-24
    • /
    • 2007
  • This study is to derive the rainfall intensity formula based on the representative probability distribution using multivariate analysis in Korea. The annual maximum rainfall data at 57 stations having more than 30years long records were used for 12 durations(10min, 1, 2, 3, 4, 5, 6, 8, 10, 12, 18, 24hr). 50 rainfall characteristics elements are analyzed from the collected data. The widely used 14 probability distributions are applied to the basic data in hydrologic frequency analysis. The homogeneous tests(principal component and cluster analysis) are applied to find the rainfall homogeneity. The results of this study are as followings; (1) The homogeneous test shows that there is no appropriate representative distribution for the whole duration in Korea. But hydrological homogeneous regions of point rainfall could be divided by 5 regions. (2) The GEV distribution for zones I, III, IV, V and the Gumbel distribution for zone II are determined as the representative probability distribution. (3) Comparative analysis of the results shows that the probable rainfalls of representative zones are different from those of existing researches. (4) Rainfall intensity formulas are determined on the basis of the linearization technique for the probable rainfall.

The Study on Application of Regional Frequency Analysis using Kernel Density Function (핵밀도 함수를 이용한 지역빈도해석의 적용에 관한 연구)

  • Oh, Tae-Suk;Kim, Jong-Suk;Moon, Young-Il;Yoo, Seung-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.891-904
    • /
    • 2006
  • The estimation of the probability precipitation is essential for the design of hydrologic projects. The techniques to calculate the probability precipitation can be determined by the point frequency analysis and the regional frequency analysis. The regional frequency analysis includes index-flood technique and L-moment technique. In the regional frequency analysis, even if the rainfall data passed homogeneity, suitable distributions can be different at each point. However, the regional frequency analysis can supplement the lacking precipitation data. Therefore, the regional frequency analysis has weaknesses compared to parametric point frequency analysis because of suppositions about probability distributions. Therefore, this paper applies kernel density function to precipitation data so that homogeneity is defined. In this paper, The data from 16 rainfall observatories were collected and managed by the Korea Meteorological Administration to achieve the point frequency analysis and the regional frequency analysis. The point frequency analysis applies parametric technique and nonparametric technique, and the regional frequency analysis applies index-flood techniques and L-moment techniques. Also, the probability precipitation was calculated by the regional frequency analysis using variable kernel density function.

A Derivation of Rainfall Intensity-Duration-Frequency Relationship for the Design of Urban Drainage System in Korea (우리나라 도시배수시스템 설계를 위한 확률강우강도식의 유도)

  • Lee, Jae-Jun;Lee, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.403-415
    • /
    • 1999
  • This study is to derive the rainfall intensity formula based on the representative probability distribution in Korea. The 11 probability distributions which has been widely used in hydrologic frequency analysis are applied to the annual maximum rainfall. The parameters of each probability distribution are estimated by method of moments, maximum likelihood method and method of probability weighted moments. Four tests such as $x^2$-test, Kolmogorv-Smirnov test, difference test and modified difference test are used to determine the goodness of fit of the distributions. The homogeneous tests (Mann-Whitney U test, Kruskal-Wallis one-way analysis of variance of nonparametric test) are applied to find the stations with rainfall homogeneity. The results of homogeneous tests show that there is no representative appropriate distribution for the whole duration in Korea. The whole region could be divided into five zones for 12-durations. The representative probability distribution of each divided zone for 12-durations was determined. The GEV distribution for I,II,V zones and the 3-parameter Weibull distribution for III,IV zones were determined as the representative probability distribution. The rainfall were obtained from representative probability distribution for the selected return periods. Rainfall intensity formula was determined by linearization technique for the rainfall.

  • PDF

The Development of Synthetic Unit Hydrograph Suitable to the Hydrologic Characteristics in Korea (국내 수문특성에 적합한 합성단위도의 개발)

  • Jeong, Seong-Won;Mun, Jang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.627-640
    • /
    • 2001
  • Generally, the synthetic unit hydrograph method is presented to estimate the design flood in the ungaged watershed. However, due to the lack of rainfall-runoff data, the models developed in other countries such as U.S.A. and Japan have been widely used in Korea. Therefore, it may be essential to develope the rainfall-runoff model suitable for the hydrological char-acteristics in Korea. In this study, the representative unit hydrographs are derived from rainfall-runoff data at 19 basins in Selma-Cheon and 3-IHP experimental watersheds using ridge-regression method and Nash model. And a new synthetic unit hydrograph for Korea is suggested by integrating the described results and previous studies on unit hydrograph. The newly developed method is represented as two regression forms with three independent variables of watershed area, channel length, and channel slope by multiple regression analysis is carried out for each watershed, the coefficients of determination are not improved in all cases compared out for each watershed, the coefficients of determination are not improved n all cased the synthetic unit hydrograph for each watershed. Therefore, when the new method is applied to some watersheds, the result analyzed for all data has to be used.

  • PDF

Analysis of transmissivity tensor in an anisotropic aquifer (이방성 대수층에서의 투수량계수텐서 해석)

  • 강철희;이대하;김구영;이철우;김용제;우남칠
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.53-61
    • /
    • 2002
  • An Aquifer test was carried out on five boreholes to determine the hydrologic anisotropy and the major groundwater flow direction in the aquifer system of the study area. With an assumption of the aquifer's anisotropy and homogeneity, the major transmissivity(T(equation omitted)), the minor transmissivity( $T_{ηη}$ ), and primary tensor direction ($\theta$) for each borehole were determined from the test. Besides the boreholes BH-1, BH-4 and BH-5, the anisotropy transmissivity tensor values of BH-2 and BH-3 did not correspond with the assumption. Thereafter the values were plotted on the polar coordinate, and showed that the tensor values were out of the anisotropy ellipsoid due to the high heterogeneity of BH-2 and BH-3 comparing with the other boreholes. Therefore. the anisotropy of the aquifer was examined from BH-1, BH-4. and BH-5. In BH-1, T(equation omitted) is 171.9 $\m^2$/day. $T_{ηη}$ is $71.01\m^2$/day, and the principal tensor direction is Nl5.39$^{\circ}$E. In BH-4. T(equation omitted) is $268.2 \m^2$/day, $T_{ηη}$ / is $28.75\m^2$/day and the principal tensor direction is N7.55$^{\circ}$E. In BH-5, T(equation omitted) is $168.4\m^2$/day, $T_{ηη}$ is 66.80 $\m^2$/day, and the principal tensor direction is $N76.59^{\circ}$E. On the basis of teleview logging performed on each borehole. the principal fracture directions were revealed as $N0^{\circ}$~4$^{\circ}$E/$30^{\circ}$~$50^{\circ}$SE and $N30^{\circ}$~$80^{\circ}$W/$20^{\circ}$~$50^{\circ}$NE that are the most frequently occurred sets as well as that correspond well with the calculated transmissivity tensor.