• Title/Summary/Keyword: Hydrologic Characteristic

Search Result 60, Processing Time 0.021 seconds

Hydrologic Monitoring Analysis due to Hydrologic Characteristic Variation at Urban Stream (도시하천 수문특성변화에 따른 수문모니터링 분석)

  • Seo, Kyu-Woo;Kim, Dai-Gon;Kim, Nam-Gil;Sim, Bong-Joo;Won, Chang-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.746-751
    • /
    • 2006
  • The geumjunggu of the onchunchun which is the upper stream have been maintained as a too much picture to become a concrete lining about existing low flow channel and the reservoir water protecting banks for the reason of the flow of an upper stream steep slope and back of the shortage of the channel area in a suitableness interval. This research made a rating-curve to decide since to ensure against risks to the flood control through the undo of the rivers. And we found the speed of current of a nature undo interval and existing concrete interval and water level change out. A result from this natural disposition we must apply as a data for the research about the plan to be established in the rivers maintenance basis plan of onchunchun.

  • PDF

Hydrologic Performance Characteristics of Small Hydro Power Resources for River Systems (수계별 소수력자원의 수문학적 성능특성)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.65-71
    • /
    • 2010
  • The hydrologic performance characteristics of small hydro power(SHP) sites located in four major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for SHP plants is established. Monthly inflow data measured at Andong dam for 32 years were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong dam. The results from hydrologic performance analysis for SHP sites located on five major river systems based on the models developed in this study show that the specific design flowrate and specific output of SHP site have large difference between the river systems.

Characteristic Analysis of Small Hydro Power Resources for River System (수계별 소수력자원의 특성 분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.235-240
    • /
    • 2011
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong darn. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems.

  • PDF

Analysis of Performance Characteristic for Small Scale Hydro Power Plant with Long Term Inflow Condition Change (장기유입량 변화에 의한 소수력발전소 성능특성분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.39-43
    • /
    • 2009
  • The variation of inflow at stream and hydrologic performance for small scale hydro power(SSHP) plants due to climate change have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for SSHP plants is established. Monthly inflow data measured at Andong dam for 32 years were analyzed. The existing SSHP plant located in upstream of Andong dam was selected and analyzed hydrologic performance characteristics. The predicted results from the developed models show that the data were in good agreement with measured results of long term inflow at Andong dam and the existing SSHP plant. Inflow and ideal hydro power potential had increased greatly in recent years, however, these did not lead annual energy production increment of existing SSHP plant. As a results, it was found that the models represented in this study can be used to predict the primary design specifications and inflow of SSHP plants effectively.

  • PDF

Analysis on Design Parameters of Small Hydropower Sites with Rainfall Conditions (강우상태에 따른 소수력발전입지의 설계변수 특성 분석)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.59-64
    • /
    • 2012
  • The correlation between hydrologic performance design parameters of small hydro power(SHP) sites and rainfall condition have been analyzed for major river systems. The model, which can predict flow duration characteristic of stream, was developed to estimate the inflow caused from rainfall. And another model to predict hydrologic performance for SHP plants is established. Based on the models developed in this study, the hydrologic performance characteristics for SHP sites have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems. It was found that the hydrologic performance design parameters such as specific design flowrate and specific output were affected by rainfall condition in basin area of SHP sites.

Design Parameters of Small Hydro Power Sites for River Systems(I) (소수력발전입지의 수계별 설계변수 특성(I))

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.86-91
    • /
    • 2010
  • The characteristics of hydrologic design parameters for small hydro power(SHP) sites located in four major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow. And another model to predict hydrologic performance for SHP plants is established. The results from hydrologic performance analysis for SHP sites located on five major river systems based on the models developed in this study show that the specific design flowrate and specific output of SHP site have large difference between the river systems. The load factor, however, have small difference compared with specific design flowrate and specific output for all river systems. Also, it was found that the models developed in this study can be used to predict the primary design specifications of SSHP plants effectively.

An Analysis of Temporal Characteristic Change for Various Hydrologic Weather Parameters (II ) - On the Variability, Periodicity - (각종 수문기상인자의 경년별 특성변화 분석 (II) - 변동성, 주기성을 중심으로 -)

  • Lee, Jae-Joon;Jang, Joo-Young;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.483-493
    • /
    • 2010
  • In this study, for the purpose of analyzing variability and periodicity of Korean hydrologic weather parameters, 5 hydrologic weather parameters data such as annual precipitation, annual rainy days, annual average temperature, annual average relative humidity, annual duration of sunshine are collected from 63 domestic meteorological stations that has the hydrologic weather parameters records more than 30 years. And in this study the variability and periodicity using the statistical methods like Wald-Wolfowitz test, Mann-Whitney test, and Wavelet Transform about hydrologic weather parameters is analyzed. The results of statistical analysis of variability and periodicity can be summarized as follows: 1) Variability commonly appeared in annual average temperature and annual average relative humidity. 2) Annual precipitation, annual rainy days and annual duration of sunshine showed different results according to area. 3) Periodicity appeared in annual precipitation and annual rainy days but did not appeard in annual average temperature, annual average relative humidity and annual duration of sunshine.

Application of the GIS in the Hydrologic Effects Caused by the Second Collective Facility Area Development in Mt. Kyeryong National Park (GIS를 이용한 계룡산국립공원 제2집단시설지구개발의 수문영향파악)

  • Ye, Woo-Sung;Lee, Hee-Sun;Lee, Kyoo-Seock
    • Journal of Environmental Impact Assessment
    • /
    • v.3 no.2
    • /
    • pp.57-67
    • /
    • 1994
  • The National Park should be preserved as described in the regulation. However, the development has resulted in degrading the environment in the park. Especially, the collective facility area has been developed for the commercial benefit rather than for the preservation. So, it is necessary to figure out the impact of the development plan proposed. Thus, the purpose of this study is to explore the hydrologic effects due to the collective facility area development in the National Park. The study site is the second collective facility area of Mt. Kyeryong National Park. The analysis of hydrologic effects due to the development has been carried out using the GIS in this study. The Rational Method and Soil Conservation Service(SCS) were used to estimate the runoff volume. During this procedure, GIS software, ARC/INFO was used to integrate, manipulate, and calculate the attribute value of a number of ploygons which represen each land use characteristic. A program was written to compute the attribute value of each polygon and to estimate the difference of peaktime runoff volume before and after development.

  • PDF

Characteristics of Small Hydro Power Resources for River System (수계별 소수력자원의 특성)

  • Park, Wansoon;Lee, Chulhyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.193.1-193.1
    • /
    • 2010
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong dam. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems.

  • PDF

Design Parameters of Small Hydro Power Sites for River Systems(II) (소수력발전입지의 수계별 설계변수 특성(II))

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study show that the data were in good agreement with measured results of long term inflow at Andong dam. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites had some difference between the river systems. Especially, the specific design flow and specific output of SHP sites located on North Han river and Nakdong river systems had large difference compared with other river systems.