• Title/Summary/Keyword: Hydrogeochemistry

Search Result 51, Processing Time 0.038 seconds

Hydrogeochemistry of shallow groundwater in a small catchment area, Cheonan, Korea: Emphasis on redox condition and nitrate problem

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Gi-Tak;Park, Byoung-Young;Kim, Kangjoo;Lee, Chul-Woo;Kim, Hyoung-Soo
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.99-102
    • /
    • 2003
  • Shallow groundwater systems are highly vulnerable to anthropogenic contamination and are characterized by a variety of redox condition. The redox state is a key parameter to control the nitrate contamination which is related to nitrification or denitrification processes. In relation to the control of nitrate problem, it is very important to understand the source, transport and fate of nitrogen compounds in a groundwater system. (omitted)

  • PDF

Spatial distribution and temporal variation of hydrogeochemistry in coastal lagoons and groundwater on the eastern area of korea

  • Chanyoung Jeong;Soo Min Song;Woo-Hyun Jeon;Hee Sun Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.247-247
    • /
    • 2023
  • Coastal lagoons play a crucial role in water exchange, water quality, and biodiversity. It is essential to monitor and understand the dynamics of hydrogeochemistry in lagoon water and its groundwater to preserve and sustainably manage the groundwater-dependent ecosystems like coastal lagoons. This study investigated the spatial and temporal hydrogeochemical characteristics of coastal lagoon (Songjiho) and groundwater on the east coast of Korea. The concentrations of major ions, water isotopes, and nutrients (nitrogen and dissolved organic carbon) in lagoon water and groundwater were periodically monitored for one year. The study revealed that major ions and total dissolved solids (TDS) concentration were higher at deeper depths of aquifers and closer to the coastal area. The hydrogeochemical characteristics of coastal lagoon and groundwater chemistry were classified into two types, Ca-Mg-HCO3 and Na-Cl, based on their spatial location from inland to coastal area. Moreover, the hydrogeochemical characteristics of coastal lagoons and groundwater varied significantly depending on the season. During the wet season, the increased precipitation and evaporation lead to changes in water chemistry. As a result, the total organic carbon (TOC) of coastal lagoons increases during this season, likely due to increased runoff by rainfall whereas the variation of chemical compositions in the lagoon and groundwater were not significant because there is reduced precipitation, resulting in stable water levels and during the dry season. The study emphasizes the impact of spatial distribution and seasonal changes in precipitation, evaporation, and river discharge on the hydrogeochemical characteristics of the coastal aquifer and lagoon system. Understanding these impacts is crucial for managing and protecting coastal lagoons and groundwater resources.

  • PDF

Potential Application of Environmental Tracer in Hydrogeochemistry Using Sorption Properties (환경 추적자의 흡착 특성을 이용한 수리지화학적 활용 가능성 고찰)

  • Choung, Sungwook;Chang, Seeun;Kim, Minkyung;Kim, Sungpyo;Um, Wooyong
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.59-68
    • /
    • 2012
  • This study provided sorption properties of chlorofluorocarbons (CFCs), and elucidated potential application of CFC sorption data in hydrogeochemistry. Prior sorption studies were reviewed for hydrophobic organic compounds similar to the CFCs, because there were only few CFC sorption studies. The CFCs are regarded as relatively conservative chemicals in groundwater environments based on their moderate hydrophobicity. However, thermally altered carbonaceous matter (TACM) can significantly increase sorption capacity and nonlinearity for hydrophobic organic compounds such as CFCs, compared to general soil organic matter. CFC sorption behavior are close to the sorption for reviewed organic chemicals. Therefore, the CFC sorption data can be used for determining hydrogeochemical properties and predicting transport of organic contaminants in TACM-containing aquifer environments.

Influence of Groundwater on the Hydrogeochemistry and the Origin of Oseepchun in Dogye Area, Korea (도계지역 오십천에서의 지하수 영향분석 - 수리지화학적 특성과 기원)

  • Hwang, Jeong Hwan;Song, Min Ho;Cho, Hea Ly;Woo, Nam C
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.167-179
    • /
    • 2016
  • Water quality of Oseepchun, Dogye area, was investigated quantitatively for its origin and hydrogeochemistry in relation to the influence of groundwater. Groundwater appears to be the principal source of Oseepchun from the water-quality monitoring data including redox potentials, composition of dissolved ions and their correlations, hydrogen and oxygen stable isotopic ratios, and the distribution and occurrence of contaminants. Water-quality type of the surface water was grouped by the water-rock interactions as $Ca-HCO_3$ type originated from carbonated bed-rocks in the Joseon Supergroup, (Ca, Mg)-$SO_4$ type related with dissolution of surfide minerals in coal beds of Pyeongan Supergroup, and (Ca, Mg)-($HCO_3$, $SO_4$) type of the mixed one. Locally water pollution occurs by high $SO_4$ from mine drainage and $NO_3$ from waste-treatment facility. Intensive precipitation in summer has no effect on the water type of Oseepchun, but increases the inflow of nitrate and chloride originated from land surface. Results of this study direct that groundwater-surface water interaction is intimate, and thus surface-water resource management should begin with groundwater characterization.